Application of MUSIC, ESPRIT and SAGE Algorithms for Narrowband Signal Detection and Localization

Franz A. de Leon MS EE (C&C) Joel S. Marciano, Ph.D. Thesis Adviser

Thesis Proposal Presentation
UP EEE

Outline

- Introduction
- Statement of the Problem
- Objectives
- Methodology
- □ Schedule

Mobile Communications

- Demands
 - Better coverage
 - Improved capacity
 - Better QoS

Mobile Communications

- Challenges
 - Interference
 - Contamination of an information-bearing signal by another similar signal
 - Fading
 - Change in the attenuation of the communications channel

Introduction Challenges

Mobile Communications

- □Challenges
 - Multipath
 - □Describes propagation that arrives at a receiver having traveled over different paths
 - Limited Capacity
 - □Limitation on the bandwidth

Introduction Smart Antennas

Conventional Antennas vs Smart Antennas

- Conventional Antennas
 - Omnidirectional transmission
 - Prone to interference

- Smart Antennas
 - Focus transmission and receive energy on desired directions
 - Place nulls on unwanted interference

Smart Antenna Architecture

Introduction

DOA Estimation

Direction of Arrival Estimation

- Conventional Methods
 - Delay-and-Sum Method
 - Capon's Minimum Variance Method
- Subspace-based Methods
 - MUSIC
 - ESPRIT
- Maximum-likelihood Methods
 - Alternating Projection Algorithm
 - SAGE

- ☐ Multiple Signal Classification
- Schmidt R.O., "Multiple Emitter Location and Signal Parameter stimation", IEEE Trans. On Antennas and Propagation, Vol. AP-34, No. 3, 1986.
- Subspace method based on the eigenvector decomposition of the covariance matrix

$$\mathbf{R}_{xx} = E\left(\mathbf{x}(t)\mathbf{x}^H(t)\right)$$

Covariance matrix with uncorrelated noise

$$\mathbf{R}_{xx} = \mathbf{A}E\left(\mathbf{s}(t)\mathbf{s}^{H}(t)\right)\mathbf{A} + E\left(\mathbf{n}(t)\mathbf{n}^{H}(t)\right)$$

Performing SVD on the covariance matix

$$\mathbf{R}_{xx} = \mathbf{U}\Lambda\mathbf{U}^H$$

- The eigenvalues can be classified as coming from the source, interference and noise
- ☐ The smallest eigenvalues are

$$\lambda_{L+1} = \lambda_{L+2} = \ldots = \lambda_N = \sigma^2$$

The eigenvectors corresponding to the smallest eigenvalues span the noise subspace

Projecting the array factor to the noise subspace produces the vector

$$\mathbf{z} = \mathbf{P}_{\mathbf{A}}^{\perp} \mathbf{a}(heta)$$
 $\mathbf{P}_{\mathbf{A}}^{\perp} = \mathbf{I} - \mathbf{A} \mathbf{A}^{+} = \mathbf{U}_{n} \left(\mathbf{U}_{n}^{H} \mathbf{U}_{n} \right)^{-1} \mathbf{U}_{n}^{H} = \mathbf{U}_{n} \mathbf{U}_{n}^{H}$

Searching the magnitude squared of the projection vector where it is zero determines the DoA of the signals

$$f(\theta) = \mathbf{z}^H \mathbf{z} = \mathbf{a}^H(\theta) \mathbf{P}_{\mathbf{A}}^{\perp H} \mathbf{P}_{\mathbf{A}}^{\perp} \mathbf{a}(\theta) = \mathbf{a}^H(\theta) \mathbf{U}_n \mathbf{U}_n^H \mathbf{a}(\theta)$$

- Advantage: Provides high resolution DoA estimate
- Disadvantage: MUSIC breaks down for correlated signals

□ Simulated MUSIC Spectrum

Introduction

ESPRIT

- <u>E</u>stimation of <u>Signal Parameters via <u>R</u>otational <u>I</u>nvariance <u>T</u>echniques
 </u>
- Paulraj A., Roy R., Kailath., "Estimation of Signal Parameters via Rotational Invariance Tchniques-ESPRIT", IEEE Trans. On Acoustics Speech, and Signal Processing, Vol. 37, No. 1, January 1989.
- ☐ Subspace method that exploits the rotational invariance of the signal subspaces of subsets of the array receiver
- Does not require knowledge of array manifold

Introduction ESPRIT

- Key idea in ESPRIT is the formation of two 'identical arrays', matched arrays
- \square The output vectors of matched arrays x_1 and x_2 are

$$x_1(k) = V_1s(k) + n_1(k)$$

 $x_2(k) = V_1Bs(k) + n_2(k)$

where the diagonal matrix B has elements given by

$$z_{i} = \exp(\frac{2\pi i}{\lambda} \{d_{x} \sin \theta_{i} \sin \phi_{i} + d_{y} \cos \theta_{i} \sin \phi_{i} + d_{z} \phi_{i}\})$$

□ The matrix V₁B describes the translation invariance of the first array

The output of the array is

$$z(k) = \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} V_1(k) \\ V_1(k)B \end{bmatrix} s(k) + \begin{bmatrix} n_1(k) \\ n_2(k) \end{bmatrix}$$

- Performing similar eigenvalue problem as with MUSIC, the signal directions can be obtained from the phases of the complex eigenvalues
- Advantage: array calibration requirements are not stringent
- Disadvantage: limited array geometry

□ Simulated Results using ESPRIT

- Space-Alternating Generalized Expectation-Maximization Algorithm
- FESSLER J. A., HERO A. O. Hero. "Space-Alternating Generalized Expectation-Maximization Algorithm", Department of Electrical Engineering and Computer Science, University of Michigan.
- □ Technique derived from Maximum Likelihood (ML) Method

Introduction SAGE

- The received signal is regarded as an incomplete data which may be expressed as hypothetically complete function but unobservable data
- Updates the parameters sequentially by alternating between several small hidden data spaces

- Advantage: performance is superior to the subspace based techniques especially in low SNR conditions
- Disadvantage: computationally intensive

Introduction SAGE

□ Simulated convergence using SAGE

Simulated results using SAGE

Statement of the Problem

- The simulated results employing MUSIC, ESPRIT and SAGE algorithms must be experimentally verified.
- The performance of MUSIC, ESPRIT and SAGE in detecting and localizing signals should be compared.

Objectives

- To be able to successfully implement and evaluate MUSIC, ESPRIT and SAGE algorithms using empirical measurements;
- To be able to implement a physical testbed for data gathering;
- □ To be able to investigate the effects of varying experimental set-up parameters.

Objectives Methodology

- Design and Implementation of the antenna elements for the virtual antenna array
 - implemented using an omnidirectional monopole antenna
 - Compatible with $F_c = 1.9$ Ghz
 - Virtual antenna array

Methodology RFE

- Implementation of the analog RF front-end receiver circuitry for each antenna
 - LNA and Mixer
 - IF=110Mhz
 - RF2489

Methodology Data Acquisition

- Configuration of the data acquisition blocks and interface to the personal computer (PC)
 - Sample data at 80MHz
 - Store data on onboard SRAM

Testbed Block Diagram

Methodology Testing of Ind Sys

- □ Testing of individual sub-systems
 - Antenna Sub-block
 - Input impedance
 - Spatial response
 - RF analog front-end receiver sub-block
 - ☐ input impedance, gain and phase response
 - ☐ Frequency response
 - IF digital sub-block
 - ADC outputs
 - Communication to PC

- Data acquisition
 - Source: Vector signal generator
 - Modulation Scheme: BPSK
 - \Box Fc=1.9Ghz
 - Emulate 4 and 8-element uniform linear array Parameters
 - Inter-element spacing
 - Transmitter signal power
 - Antenna array structure
 - Direction of the source
- ☐ Offline Processing using MATLAB®

Methodology

Gantt Chart

Methodology Phases

Phases

- Design and Implementation of the antenna elements for the virtual antenna array
- II. Implementation of the analog RF front-end receiver circuitry for the single antenna
- III. Configuration of the data acquisition blocks and interface to the personal computer (PC)
- IV. Testing of individual sub-systems
- V. Testing and Calibration of the complete system
- VI. Data acquisition
- VII. Offline processing of empirical data using MUSIC, ESPRIT and SAGE
- VIII. Documentation

THANK YOU!