
1. ABSTRACT

In this research paper, a hardware emulator will be implemented for an adaptive
Minimum Bit Error Rate (MBER) beamforming algorithm using Altera’s Stratix EP1S25
DSP Development Board interfaced with TI’s TMS320C6701 DSP Board. A two-
element antenna array will be used as the receiver. The performance of the MBER
algorithm will be compared to the performance of the widely-used Least Mean Squares
(LMS) algorithm.

The MBER algorithm directly minimizes the bit error rate (BER) of a communications
system instead of the mean square error (MSE). Studies have shown that the MBER
approach achieves better performance than the classical Minimum MSE approach. In this
paper, a stochastic gradient based implementation will be used, which allows a sample-
by-sample adaptation with a computational complexity similar to the LMS algorithm.

For this testbed, BPSK signals are generated by a vector signal generator and are sampled
using the EP1S25’s onboard A/D converter. The effects of AWGN, co-channel
interference and multipath are simulated using the FPGA board. Digital downconversion
is also performed using the FPGA board. The complex weights adjustments for the
antenna array are computed by the TI DSP board. Real-time adaptation will be
implemented for both the MBER and MMSE approach. The actual BER will be the basis
of comparison for the two approaches.



2. INTRODUCTION

2.1 Statement of the Problem

When Chen introduced the Adaptive Minimum Bit-Error-Rate (MBER) solution

as an alternative to the Minimum Mean-Square-Error (MMSE) solution for beamforming

applications, simulations showed that the MBER solution offers potentially significant

performance gains over the MMSE solution. One of the major advantages of the MMSE

solution is that it can be easily implemented using the Least Mean Squares (LMS)

algorithm or one of its variants. In [10], Chen derived a stochastic gradient-based

algorithm, called the Approximate Least Bit-Error-Rate (ALBER) algorithm, which has a

computational complexity similar to that of the LMS algorithm, thus further increasing

the attractiveness of the MBER solution. However, although the MBER algorithm

theoretically has the same complexity as the LMS algorithm, the feasibility of real-time

implementation of the algorithm in hardware still needs to be tested. In particular, the use

of exponential functions in the weight update equations of the ALBER algorithm might

prove to be a limiting factor in the data rates achievable by this algorithm. 

2.2 Objectives

In this thesis, the problem of implementing the ALBER algorithm in real-time on

existing hardware will be addressed. The objectives of this thesis may be broken down

into the following:

1. Compare the memory requirements of the ALBER and the LMS algorithms. Both the

data and program memory required for both algorithms will be investigated.



2. Compare the processing power required to achieve the same output data rates for the

ALBER and the LMS algorithms using the same hardware setup. In relation to this,  the

maximum data rates achievable for both algorithms using the same hardware setup will

also be determined.

3. Compare the performance of the two algorithms in the presence of different wireless

channel distortion effects. The BER will be the primary basis of comparison for the two

algorithms.



3. REVIEW OF RELATED LITERATURE

3.1. Characteristics of the Wireless Channel

The wireless channel operates through electromagnetic radiation from the

transmitter to the receiver. Ideally, a signal originating from the transmitter would travel

to the receiver in a single straight line path. The signal at the receiver would then be a

perfect copy of the signal from the transmitter. In the real world, however, this is

generally not the case. In passing through the wireless channel, the signal is modified and

what arrives at the receiver is the combination of attenuated, reflected, refracted and

diffracted versions of the original. The channel also adds noise to the signal, further

distorting it.

3.1.1 Noise

Like all other practical communications channels, the wireless channel is

corrupted by ambient noise. This noise may be caused by thermal vibrations in the

transmitting and receiving antenna, black body radiation from the earth and other warm

objects or from celestial sources such as the sun. This noise may be modeled as having a

very wide bandwidth and random in nature. [1, 2]

One widely-used model is that of Additive White Gaussian Noise (AWGN), or

simply white noise. This noise is characterized as having a flat power spectral density (at

least, in the frequency band we are interested in), and induces a Gaussian probability

distribution at the output of a linear filter that it is used as an input to. This type of noise

is additive to the other signals at the receiver, as its name implies.



3.1.2 Attenuation

In a noiseless, lossless and obstruction-free wireless channel, signals emanating

from the transmitter will still experience attenuation as it travels to the receiver. For an

isotropic antenna, the power at the receiver is inversely proportional to the square of the

distance between the receiver and transmitter, as a direct consequence of the law on

conservation of energy. This type of attenuation, also called diffusive attenuation, cannot

be remedied and is present at all frequencies.

For the non-ideal channel, attenuation is aggravated by shadowing. Shadowing

occurs when there are obstructions, such as buildings and walls, in the signal path

between the transmitter and receiver.  The signals may diffract off the obstruction

boundaries (if the obstructions are not too large), thus preventing total shadowing. The

amount of diffraction is dependent on the radio frequency, with lower frequencies

diffracting more than higher frequencies, which is why shadowing is more detrimental to

high frequency signals. If diffraction is not possible, the signals may be partially absorbed

by the material: the larger the depth of the material, the greater the attenuation. Shadow

fades may last for several seconds and even minutes, which is why it is also called slow

fading. [1]

A useful model for representing the path loss effects of the environment is the

lognormal shadowing model. This model represents the path loss versus distance

relationship with the equation:
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where Ploss is the path loss in dB, d is the distance, d0 is the distance associated with a

reference measurement. The distance power exponent, n, and the parameter X are

dependent on the environment. [1]

3.1.3 Multipath

In wireless channels, there exists, most of the time, numerous objects that may

reflect the transmitted signals. These reflective surfaces provide multiple paths between

the transmitter and the receiver. The propagation delay and loss for each of these paths is

generally not identical to that of the other paths. The signal seen by the receiver is the

vector sum of all these multipath signals. Figure 3.1 shows an illustration of multipath.

Figure 3.1. Multipath propagation

The  effects  of  multipath  are  twofold.  First,  multipath  may  cause  fading.  The

signals at the receiver add up destructively when they are out of phase. In particular, for a

delay  difference  of  an  odd  number  of  half  wavelengths,  the  destructive  interference

reaches its maximum. The power level of the signal at the receiver may be reduced to a

level  too  low to  be  detected.  This  type  of  fading  is  often  called  frequency-selective

fading.  The  Rayleigh  distribution  is  commonly  used  to  describe  the  statistical  time

varying nature of the received signal power when there is no line of sight (LOS) existing

between  the  transmitter  and  the  receiver.  If  a  LOS exists,  or  if  there  is  a  dominant

multipath component present, the resulting fluctuations in the signal power are modeled

by a Ricean distribution .[1, 2, 3]
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Figure 3.2 shows a graph of typical Rayleigh fading as a function of distance. It

also shows the effect of slow fading. The received signal r(t) is the sum of m(t), which

shows slow fading due to shadowing effects, and ro(t), which illustrates Rayleigh fading.

In comparison to slow fading, Rayleigh fading occurs only over very short distances.

Figure 3.2. Slow fading and Rayleigh fading [4].

The second effect of multipath is to cause delay spread. Delay spread is the time

dispersion of the channel. If the delay difference between the multiple paths is on the

order of the data symbol intervals, this can result in intersymbol interference (ISI). ISI

occurs when the contributions from multiple symbols arrive at the receiver at the same

time. The effect of multipath on ISI is particularly significant in high data-rate systems.

Correct demodulation may be impossible if there is too much ISI present. [2]

3.1.4 Interference

Interference may be classified into two types. Multiple access interference (MAI)

is a result of other signals using the same network. Co-channel interference (CCI) is a

result of signals from other communications systems using the same frequency band as

the signal transmitted. Like ISI, these interfering signals may add up at the receiver and

possibly distort the desired signal beyond recovery. [2]



3.2. Antenna Array Beamforming

Antenna arrays may be used to combat the effects of multipath fading and

interfering signals to improve the performance and capacity of wireless communications

systems. An antenna array consists of two or more antenna elements connected to a feed

network. Each element may be fed identical signals. In this case, the central beam may be

made narrow and the sidelobes reduced by appropriately choosing the number of antenna

elements and the spacing between these elements. Figure 3.3 shows such an arrangement

for a 4-element array and the corresponding radiation pattern.

Alternatively,  the  phase  fed  to  each  element  may  be  varied  to  optimize  the

received signal. By using appropriate phase shifts in the array elements, the central beam

may be steered in any direction. Figure 3.4 shows such an array with 8 elements and the

corresponding radiation pattern.  The central  beam for this  configuration is  steered 45

degrees to the left. [5]

In beamforming, both the phase and the amplitude of each antenna element may

be varied to optimize the received signal. This is achieved by multiplying the signals at

each antenna element by a complex weight. In this configuration, the side lobes and nulls

are controlled better. [5]



Figure 3.3. Fixed phase antenna array [5].



Figure 3.4. Electronically steered array [5].

3.2.1 Filter and Sum Beamforming

In this approach to beamforming, the signals in each element are delayed,

multiplied with weights then added. The beamformer delays compensate for the different

propagation delays of each multipath so that the signals at the receiver may be added

synchronously, while the weights compensate for the different path losses in each



multipath. In this way, the desired signal contributions are added synchronously, resulting

in a higher SNR. [6]

3.2.2 Constrained Beamforming

In constrained beamforming, there is prior knowledge about the operating

environment and the weights are constrained accordingly. For example, the signals from

certain directions may be suppressed or the signal from a desired direction may be

maximized by applying the appropriate constraints to the beamforming array complex

weights. However, this approach limits the degrees of freedom of the array and involves

time-consuming operations, making it unsuited to real-time applications. [6]

3.2.3 Other Applications of Antenna Arrays

Aside from beamforming, antenna arrays may be used in a wide variety of

applications where spatial and temporal-spatial filtering is required. When it is desired to

know how many signal sources there are and where they are located, super-resolution

techniques for antenna arrays may be utilized. Blind deconvolution may be used to reduce

the effects of unwanted sources and noise in an unknown system. [6]

3.3. Adaptive Beamforming Arrays

An adaptive beamforming array consists of an antenna array whose weights are

adjusted adaptively and is capable of tracking the time-variation of the operating

environment (provided it is not too fast-changing) and optimizing the received signal

accordingly. [7]



The simplest form of adaptive antennas is the side-lobe canceler. When an

interfering signal is present along with the desired signal, this interfering signal may be

canceled exactly in the absence of receiver noise. If receiver noise does exist, the side-

lobe canceler still performs satisfactorily as long as the desired signal is strong compared

to the receiver noise. [7]

The adjustment of the complex weights of each antenna element is done through

an adaptive algorithm. Several algorithms for finding the optimum weight coefficients

have been developed over the past years. One of the most widely-used of these

algorithms is the Least Mean Square (LMS) algorithm. Its popularity is due to its

simplicity and satisfactory performance in non-stationary environments. Furthermore,

prior knowledge of the operating environment is not needed for adaptation.

Figure 3.5 shows an LMS implementation of an adaptive antenna array with four

elements. The input signals to the antenna elements are given by the vector x, and the

weight coefficients are contained in the weight vector w. The outputs of the weight

multipliers are added linearly and subtracted from a desired response, d, to give the error

signal, e. For the LMS algorithm, the goal is to minimize the mean square error (MSE), E

[e2].

The optimum weight vector wopt which gives the minimum mean square error can

be computed by utilizing the equation

wopt = R-1S (3.2)

where R is the autocorrelation matrix of the input and S is the cross correlation vector

between the input and the desired output. However, accurate estimates of R and S are

generally not available, and the computation of the inverse of R is a resource-hungry task,



Figure 3.5. LMS implementation. [8]

particularly when the number of antenna elements is large. The LMS algorithm remedies

these problems by updating the weight coefficients as each sample of the input arrives.

The update equation for the weights is given by

w(k+1) = w(k) + 2?ex(k) (3.3)

where k indicates the iteration number and ? is an appropriately chosen step size.

The above update equation is valid only if the weights are scalars (for example, if

we are dealing with BPSK signals). If the weights are complex valued, the modified

update equation is

w(k+1) = w(k)+ 2?e*x(k) (3.4)

where * indicates conjugation. [7, 8, 9]

It has been shown that this algorithm, despite its simplicity and efficiency,

provides near optimum performance in signal environments with slow time variations.

The rate of convergence is primarily governed by the step size, which is adjusted to fit the

signal environment. Smaller step sizes allow the algorithm to approach the theoretical

MMSE more closely at the expense of slower convergence rate.
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3.4. Adaptive Minimum Bit Error Rate Approach to Beamforming

Classically, adaptive beamformer algorithms have focused on minimizing the

MSE. Their goal is to approach as closely as possible the theoretical MMSE. Due to its

simplicity and ease of implementation, the LMS algorithm which was discussed in the

previous section, or a variation of it, has been widely employed for adaptive beamformer

antenna arrays.

However, in practical communications systems, the achievable bit error rate

(BER) is more important than the MSE. The system should be designed to minimize the

BER instead of the MSE. Chen et al have shown in their studies that the MBER approach

offers potentially significant improvements over the classical MSE approaches in terms

of BER. [10, 11]

Assume that the communications system consists of M signal sources,

transmitting BPSK signals. Without loss of generality, source 1 is assumed to be the

desired signal source and the other (M-1) sources are considered to be interference. The

linear array consists of L uniformly spaced elements. The input to the array can be

expressed as:

)()()()()( kkkkk nPbnxx  (3.5)

where n(k) is the complex-valued Gaussian, zero-mean noise vector with variance 2?n
2.

The output of the array is 

)()()()()( kkkkky HH nxwnxw  (3.6)

By utilizing the conditional p.d.f. of the beamformer’s output set, it was shown in

[10] that the BER of the beamformer associated with the weight vector v is given by:
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The MBER beamforming solution is the one that minimizes the bit error rate:

wMBER = arg min PE(w) (3.9)

3.4.1 Block-Data Based Gradient Adaptive MBER  Algorithm

Several methods of finding the MBER solutions were proposed. One is a block-

data based gradient adaptive algorithm. For this approach, the p.d.f is approximated using

a Parzen window given a training block of K samples. From this estimate of the p.d.f., the

BER can be estimated as:
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Simulations show that this MBER algorithm converges rapidly to the theoretical

MBER solution for reasonably small blocks of data [10]. The downside to the above

approach is that it requires a lot of resources in order to be implemented. In particular, the

memory requirements become prohibitive due to the need for storing blocks of data in

order to estimate the output’s p.d.f.



3.4.2 Stochastic Gradient Based MBER Algorithms

 An alternative approach to estimating the MBER optimum weights is to use a

sample-by-sample adaptation algorithm. Two versions of this approach were presented in

[10], the least bit error rate (LBER) and approximate LBER (ALBER) techniques.

ALBER requires more approximations than LBER, but has a significantly lower

computational complexity, which is comparable to the LMS algorithm.

For the ALBER algorithm, the probability of BER is simplified to
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where K is the # of samples in the training block. This simplification leads to a weight

update equation similar to that of the LMS algorithm and given by:
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where the adaptive gain ? and the Parzen window kernel width ?n are the two parameters

that have to be adjusted appropriately.

Simulations show that LBER and ALBER algorithms have almost

indistinguishable learning curves. The ALBER algorithm exhibits virtually the same

convergence rate as the LBER algorithm although it involves more computations and has

a lower complexity. Both algorithms are able to closely approach the optimum MBER

solution.



3.4.3 Comparison of the Performance of the MMSE and MBER Optimum Solutions

Figure 3.6 shows a comparison of the BER performance of the optimum MMSE

and MBER beamformers. For this simulation, 5 signal sources were used, with 4 of them

being interferers, and a two-element array was used. In (a), all the sources have equal

power, in (b), one of the interferers has 6 dB higher power than the desired source, and in

(c), all the interferers have 6 dB higher power than the desired source.

For all cases, the superior performance of the MBER algorithm over traditional

MMSE algorithms can be seen. In particular, for cases (b) and (c), the MMSE approach is

unable to achieve low BERs even at high SNRs while the MBER approach still exhibits

lower BER as SNR increases.

3.4.4 Normalized MBER Algorithms

The above MBER algorithms have so far assumed non-fading channels. In a

realistic wireless environment, the presence of multipath components will invariably

introduce fading effects.

Garcia [13] investigated the performance of the above MBER algorithms in

frequency-flat, directional fading channels with co-channel interference and developed

MBER algorithms more suited to this type of signal environment. Simulations in his

study have shown that in a fading channel, MBER beamformers may fail to achieve

lower BERs compared to Wiener-solution-based beamformers.



Figure 3.6. Comparison of BER performance [10]



To improve the MBER performance in fading channels, normalization was

performed on the MBER solution by removing the variation of the cost function with

respect to the input signal power. It was proposed in [13] to modify the probability of bit

error and change it to:
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The ||xr|| term was inserted in the denominator to minimize the variation of the bit error

probability with respect to the input signal’s power.

Simulations have shown that, in a fading channel, given the same mean SNR, the

Normalized MBER (NMBER) algorithms are capable of achieving lower BERs

compared to their respective un-normalized MBER counterparts as well as traditional

MMSE techniques.



4. PROPOSED METHODOLOGY

4.1 Implementation

A simplified block diagram of the set-up used in this research is shown in Figure

4.1. The FPGA board to be used is Altera’s Stratix EP1S25 DSP Development Board.

The DSP board to be used is TI’s TMS320C6701. The output will be displayed using a

host computer.

Figure 4.1. Block diagram

A vector signal generator will be used to generate BPSK modulated signals. This

signal sequence will be used as the desired signal sequence. The power of this generated

signal may be varied to produce different values of signal-to-noise ratios (SNR).
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For this research, the MBER algorithm will be implemented for a two-element

antenna array. However, to control the signal environment, the BPSK signals generated

by the vector signal generator will already be in the intermediate frequency of 100 MHz

and will be fed directly to one of the FPGA A/D converters. This ensures that the signals

will still be uncorrupted by the channel when the A/D converter samples them at the rate

of 80 mega-samples per second, using 12 bits per sample. Simulation of the second

antenna element and effects of the channel will be added later on.  

After reception, digital downconversion will be performed on the signal. The

digital downconverter (DDC) will be implemented entirely in the FPGA board. Instead of

using just a single, large decimating filter, the DDC will be broken down into several,

smaller cascaded filters. This allows the filters to be relatively easier to design and

reduces the resources consumed on the FPGA. After downconversion, the received

signals will have been translated to their complex baseband representation. Further

manipulations of the signal will now make use of complex arithmetic.

Effects of the channel will be added after the downconversion. The first channel

effect to be added is interference. To simulate interference sources, independent

sequences of baseband signals will be generated in the FPGA. The power of these signals

may be controlled to produce different values signal-to-interference ratios (SIR).

Each interference source’s direction of arrival (DOA) is set beforehand, as well as

the desired signal’s DOA. The 2-element array is modeled, without loss of generality, by

using the desired and interference signals that arrive at element 1 as the reference signals.

The desired signal component arriving at element 1 is the signal generated by the vector

signal generator, while the interference signals components are those generated in the

FPGA. To simulate the signals arriving at the second antenna element, appropriate phase



shifts which depend on the signals’ DOA are applied to each signal sequence. To reduce

usage of resources in the FPGA, the complex multipliers to be used for each signal

sequence are computed beforehand and are implemented as constant values in the FPGA.

An antenna element spacing of half a wavelength is used for the computations, and a

1.9GHz carrier is assumed for both the desired and interference signals.

The next step will be corruption of the signal by Additive White Gaussian Noise.

This noise has an in-phase and quadrature component, which are added independently to

the in-phase and quadrature components of the baseband signals at each antenna element.

The signals at the antenna elements are already the sum of the desired signal and the

interference signals. To simulate the effect of noise, a look-up table of Gaussian-

distributed noise samples will be used.

The effects of multipath will be simulated in the time domain using a frequency-

flat fading model. Delayed versions of the arriving desired and interference signals will

be generated, each with a corresponding attenuation and DOA. These time-delayed

sequences will be added to the signals at each antenna element, with the appropriate

phase shifts taken into consideration. A minimum of one multipath component will be

implemented for each signal source; the actual number of multipath components will

depend on the resources available in the FPGA board.

After all the channel effects have been added and the array output has been

computed, these data will be passed onto the TI DSP board. The interface between the TI

TMS320C6701 board and the Altera EP1S25 board is the External Memory Interface

(EMIF) port on the TI side and the TI-EVM connector on the Altera side. Figures 4.3 and

4.4 show the block diagrams of the TI (from EVM user’s guide) and Altera (from



EP1S25 datasheet) boards, respectively, with the appropriate interface ports highlighted

in red.

Computation of the weights will be done in the TI DSP board. Two algorithms for

computation of the adaptive beamformer weights will be implemented separately. The

first will be a Minimum-Mean-Square-Error solution which will be implemented using

the Normalized Least Mean Square (NLMS) algorithm. The second will be a Minimum-

Bit-Error-Rate solution which will be implemented using the ALBER algorithm

introduced in section 3.4. The performance of the two algorithms shall be compared 

Figure 4.3. EP1S25 block diagram



using the achieved BER as the basis of comparison. The convergence speed of the

algorithm will not be given much importance in both cases.

The actual BER will be computed in the TI board. In order to access the computed

BERs, the TI board will be interface to a host computer using JTAG Emulation. The

relevant interface port can also be seen in Figure 4.4 highlighted in blue.

Figure 4.4 TMS320C6701 block diagram



4.2 Testing

As already mentioned, the performance of the MMSE and MBER solution based

on the BER will be compared in this research using the hardware implementation detailed

above. In addition, the resource usage of the two algorithms in terms of memory and

processing power requirements will also be investigated.

For each algorithm, four sets of test cases will be implemented. For the first set of

test cases, the desired signal will only be corrupted by AWGN. No interfering sources

and multipath effects are present. The SNR will be varied by changing the input signal’s

power while maintaining the noise power at a constant level. Plots of BER versus SNR

will be generated for both the algorithms and displayed using the host computer.

The second set of test cases will add the effect of co-channel interference.

Between one to three interference sources will be added, each corrupted by AWGN. The

performance of the algorithms will be tested for:

a) SIR < SNR

b) SIR = SNR

c) SIR > SNR

The performance of the algorithms when the separation between the desired signal source

and interference source (in degrees) is varied will also be evaluated. Again, plots of BER

will be generated and displayed on the host computer.

The third set of test cases investigates the effect of multipath on the performance

of the algorithms. Interference sources are not present for these test cases.

Finally, the fourth set of test cases combines the AWGN, co-channel interference

and multipath effects.



For all sets of test cases, the data and program memory requirements in the FPGA

and DSP board will be compared for the two algorithms. For the FPGA, the number of

logic elements used will be the basis of comparison, while for the DSP board, the amount

of memory space needed by the program and look-up tables will be used as the basis of

comparison. 

Besides the memory requirements, the processing power needed by both

algorithms will also be compared. The processing power needed will be quantified by the

number of cycles used by non-NOP instructions in each iteration of both algorithms for

the same output data rate. In addition, given the same set of parameters for a particular

signal environment, the maximum achievable data rate will be determined.

The resource usage of the channel effect simulations will not be included in the

comparisons since this should be identical for both algorithms.

4.3 Gantt Chart
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(3) Coding of MMSE and MBER algorithms

(4) Integration

(5) Testing
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