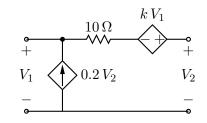


Problem 1^1

In the figure shown below, (a) find the exact resonant frequency of the network, ω_o , and (b) find $Z_{in}(\omega_o)$.

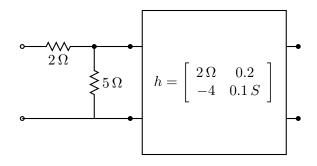
Hint: $\frac{a+jb}{c+jd} = \frac{N \angle \theta_n}{D \angle \theta_d}$ gives a real value only when $\theta_n = \theta_d$ (*i.e.*, when $\tan^{-1} \frac{b}{a} = \tan^{-1} \frac{d}{c}$).

Problem 2^2


Design a parallel resonant circuit so that a variable capacitor can adjust the resonant frequency over the AM broadcast band, 550 to 1680 kHz, with $Q_o \leq 50$ at any frequency in the band. Let $R = 10 \,\mathrm{k}\Omega$ and give values for L, C_{min} , and C_{max} . Hint: before solving for L, try to solve for C_{min} or C_{max} first.

Problem 3³

A parallel resonant circuit has $Q_o = 20$ and is resonant at $\omega_o = 10 \text{ krad/s}$. If $Z_{in} = 5 \text{ k}\Omega$ at $\omega = \omega_o$, what is the width of the frequency band about resonance for which $|Z_{in}| \ge 3 \text{ k}\Omega$?


Problem 4^4

Using the figure shown below, find the impedance parameters of the circuit. What is the value of k that will produce a reciprocal network (i.e., $z_{12} = z_{21}$)? What is the value of k that will produce a symmetric network (i.e., $z_{11} = z_{22}$)?

Problem 5⁵

In the figure below, a 2Ω and a 5Ω resistor are connected as shown at the input of the two port whose *h* parameters are given. Find the hybrid parameters for the composite network.

¹Taken from Hayt and Kemmerly, Problem 14.5

 $^{^2\}mathrm{Adapted}$ from Hayt and Kemmerly, Problem 14.6

³Taken from Hayt and Kemmerly, Problem 14.12

 $^{^4\}mathrm{Adapted}$ from Hayt and Kemmerly, Problem 16.11 $^5\mathrm{Taken}$ from Hayt and Kemmerly, Problem 16.33