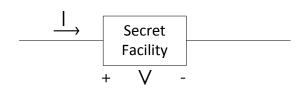

- **#1.** The following network has a resistive thevenin impedance seen across terminals a and b.
  - a. Find the inductance L.
  - b. Draw the thevenin and norton equivalent circuits seen across a and b.

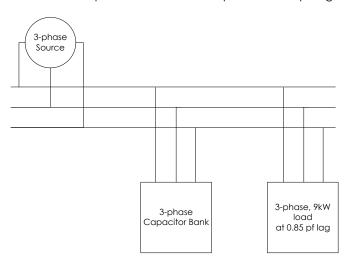



**#2.** Find  $I_1(t)$  if  $I_2(t) = 28.48\cos(10t+10^0)$  A.



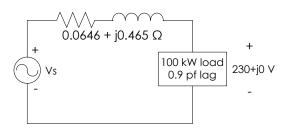
**#3.** Find  $V(j\omega)$  given  $V_1 = 11\angle -30^{\circ} V$ ,  $|V_2| = 7.765 V$ , and  $X_2/R_2 = 3.732$ .



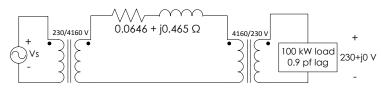

**#4.** Complete the table for the following secret facility:



| Generated<br>P (W) | Generated<br>Q (Vars) | V(jω)<br>(volts)         | l(jω)<br>(amperes) | pf* |
|--------------------|-----------------------|--------------------------|--------------------|-----|
|                    |                       | 220∠00                   | 10∠-200            |     |
| 100                | 75                    | 12.5∠-63.13 <sup>0</sup> |                    |     |
| 100                | -75                   |                          | 10∠-1000           |     |


<sup>\*</sup> specify if leading or lagging

**#5.** Find the size of the 3-phase capacitor bank (in kVA) such that the 3-phase source delivers power at 0.9 pf lag.




**#6.** Find the real power (in kW) supplied by the voltage source for each case.

## Case 1:



Case 2:

