### **Chapter 8**

## Transformers

Artemio P. Magabo
Professor of Electrical Engineering



Department of Electrical and Electronics Engineering



University of the Philippines - Diliman

## **Direct Current Power System**

The first DC Power System was the Pearl Street Station, built by Thomas Edison in New York City in 1882.

- Steam engine coupled to a 110volt Direct Current (DC) generator
- Underground cable system
- □ All loads were incandescent bulbs
- 59 customers within an area 1.5km in radius





## **Alternating Current System**

The first AC system was built by William Stanley, an associate of George Westinghouse, at Great Barrington, Massachusetts in 1886.

- First commercial application of transformers
- Loads consisted of 150 lamps



#### **AC System vs. DC System**

#### **DC System**

Power delivery is limited to short distances

Limited power capacity

Problems with voltage drop and losses

#### **AC System**

Voltage transformation made possible transport of electric energy over long distances

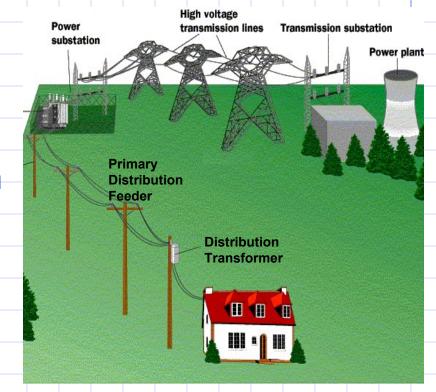
Generation capacity can be built to fully utilize available resources

Smaller losses and voltage drops



## **Transformers in AC Systems**

- Generation
  - Generating Plant
- Transmission
  - Transmission Substation
  - Transmission Lines
  - Sub-transmission Lines
- Distribution
  - Power Substation
  - Primary Distribution Feeders
  - Distribution Transformers
  - Secondary Distribution Feeders and Services





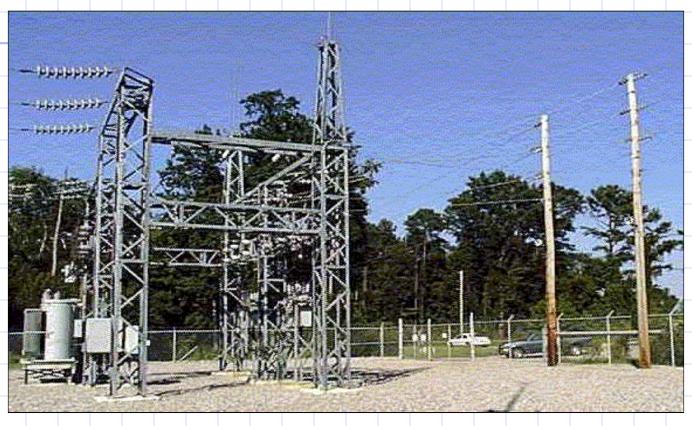
#### **Power Substation**



High Voltage: 500, 230 or 138 kV Low Voltage: 115 or 69 kV



## **Distribution Substation**



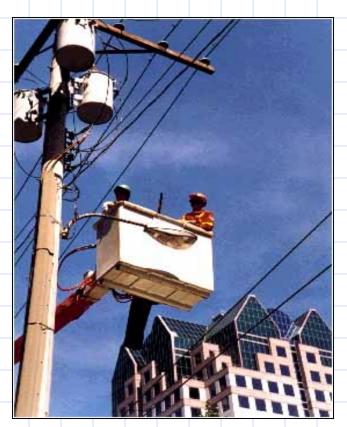
High Voltage: 69 kV Low Voltage: 13.8 kV



#### **Distribution Transformers**



High Voltage: 13.8 kV

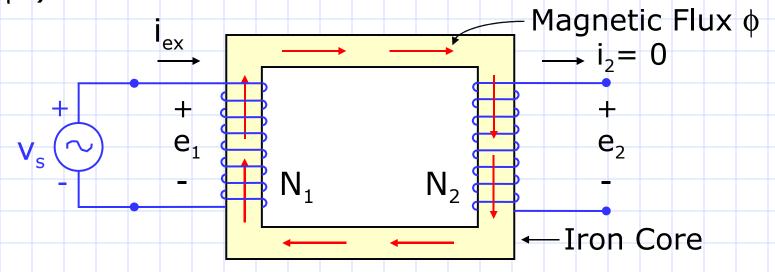


Low Voltage: 220 V



### **Two-Winding Transformer**

Consider the two coils shown. Coil 1, which is connected to a voltage source, draws a very small exciting current that produces the magnetic flux (\phi) that links both coils.



**Note:** In an ideal transformer,  $i_{ex} = 0$ .



## From Faraday's Law, voltages are induced in coils 1 and 2. The induced voltages are

$$e_1 = N_1 \frac{d\phi}{dt}$$

and

$$e_2 = N_2 \frac{d\phi}{dt}$$

Dividing the equations, we get

$$\frac{e_1}{e_2} = \frac{N_1}{N_2}$$

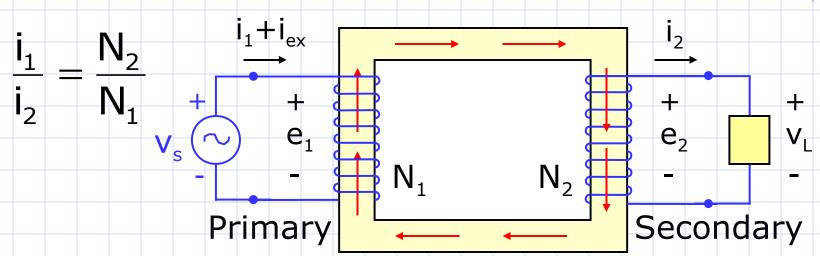
**Note:** In an ideal transformer, the ratio of the induced voltages is equal to the ratio of turns.



If coil 2 is connected to a load, it will supply a load current i<sub>2</sub> that will tend to reduce the magnetic flux. Coil 1 delivers an added current i<sub>1</sub> such that

$$N_1i_1 = N_2i_2$$
 (balanced ampere-turns)

or

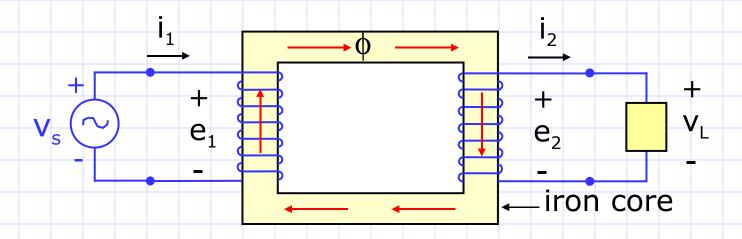


**Note:** In an ideal transformer, the ratio of the currents is equal to the inverse of the ratio of turns.



#### **Ideal Transformer**

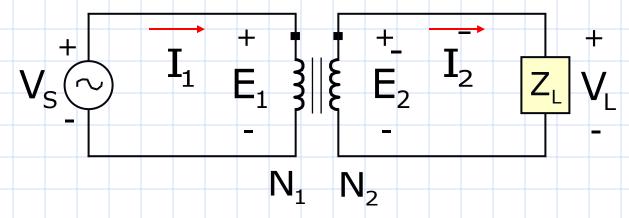
- 1. Coils 1 and 2 have no resistance.
- 2. There are no leakage fluxes in coils 1 and 2.
- The resistance loss in the iron core is zero.
- 4. The permeability of the iron is infinite. Thus, the exciting current  $(i_{ex})$  is zero.





## **Equivalent Circuit**

The equivalent circuit, with sinusoidal excitation, is shown below.



Assuming the transformer is ideal, we get the phasor equations



Solving for  $E_1$  and  $I_1$ , we get

$$\mathbf{E}_1 = \begin{bmatrix} \mathbf{N}_1 \\ \mathbf{N}_2 \end{bmatrix} \mathbf{E}_2$$
 and  $\mathbf{I}_1 = \begin{bmatrix} \mathbf{N}_2 \\ \mathbf{N}_1 \end{bmatrix} \mathbf{I}_2$ 

Take the conjugate of  $\hat{\mathbf{I}}_1$  and multiply. We get

or

$$E_1 I_1 * = E_2 I_2 *$$

which means  $P_1 + jQ_1 = P_2 + jQ_2$ 

Note: Input P and Q are transferred to the load.



Dividing  $\overset{\frown}{\mathsf{E}_1}$  by  $\overset{\frown}{\mathsf{I}_1}$ , we get

$$\frac{\mathsf{E}_{1}}{\mathsf{I}_{1}} = \begin{bmatrix} \mathsf{N}_{1} \\ \mathsf{N}_{2} \end{bmatrix}^{2} \frac{\mathsf{E}_{2}}{\mathsf{I}_{2}}$$

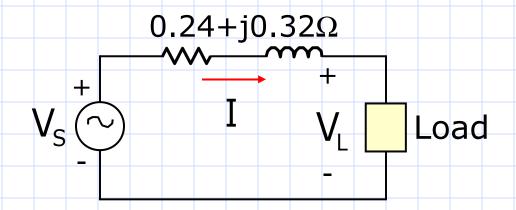
From the diagram, we note that  $Z_{\perp} = \frac{f_{\parallel}}{I_{2}}$  Substitution gives

$$\frac{\mathbf{E}_{1}}{\mathbf{I}_{1}} = \begin{bmatrix} \mathbf{N}_{1} \\ \mathbf{N}_{2} \end{bmatrix}^{2} \mathbf{Z}_{L}$$

**Note:** In an ideal transformer, a load impedance  $Z_L$  is seen at the primary side as " $Z_L$  times the square of the turns ratio."



**Example:** Find the power P and reactive power Q supplied by the source. The load draws 10 kW at 0.9 pf lag at a voltage of 220 V RMS.



Let  $V_L = 220 \angle 0^{\circ} V$ , the reference phasor

Load:  $P_L = 10,000$  watts

$$Q_L = P_L \tan(\cos^{-1} 0.9) = 4,843 \text{ vars}$$



From 
$$P_L + jQ_L = V_L^*$$
 we get

From KVL, we get

$$V_s^- = (0.24 + j0.32)I + V_L$$

$$= 20.2\angle 27.29^\circ + 220\angle 0^\circ$$

$$= 237.95 + j9.26 = 238.13\angle 2.23^\circ V$$



The power supplied by the source is

$$P_{S} + jQ_{S} = V_{S}^{T}$$

$$=(238.13\angle2.23^{\circ})(50.51\angle25.84^{\circ})$$

$$= 12,027 \angle 28.07^{\circ} = 10,612 + j5,660$$

Thus,  $P_s = 10,612$  watts and  $Q_s = 5,660$  vars.

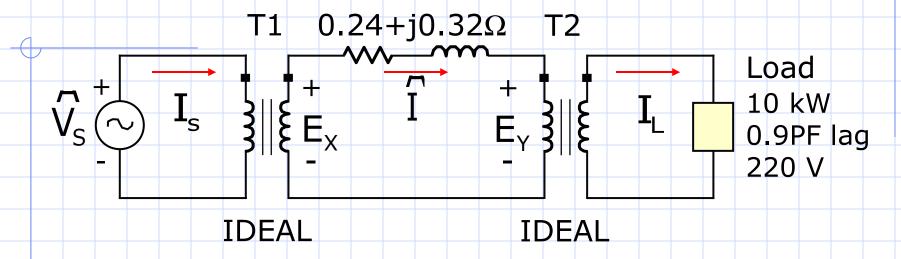
Note: The power loss in the feeder is

$$P_{loss} = I^2 R_F = 50.51^2 (0.24) = 612$$
 watts

Consider the case when two transformers are used to supply the load. Assume that the transformers have a voltage ratio of 7,967 volts to 230 volts.



The equivalent circuit is shown below.



At the load, let  $V_L = 220 \angle 0^{\circ} V$ , the reference.

With  $P_L = 10,000$  watts, we computed previously

$$Q_{L} = 4,843 \text{ vars}$$

$$I_1 = 50.51 \angle -25.84^{\circ} A$$



At the high-voltage side of transformer T2, we get

$$E_{Y} = \frac{7,967}{230} V_{L} = 7,621 \angle 0^{\circ} V$$

$$I = \frac{230}{7,967} I_{L} = 1.46 \angle -25.84^{\circ} A$$

From KVL, we get

$$E_{X} = (0.24 + j0.32)I + E_{Y}$$

$$= 0.58 \angle 27.29^{\circ} + 7,621 \angle 0^{\circ}$$

$$= 7,621.13 + j0.27 \approx 7,621.13 \angle 0^{\circ} V$$



At the source side, we get for transformer T1

$$V_{s} = \frac{230}{7,967} E_{x} \approx 220.02 \angle 0^{\circ} V$$
 $I_{s} = 50.51 \angle -25.84^{\circ} A$ 

The power supplied by the source is

$$P_{s} + jQ_{s} = V_{s}I_{s}^{*}$$

$$= (220.02\angle0^{\circ})(50.51\angle25.84^{\circ})$$

$$= 11,112\angle25.84^{\circ}$$

$$= 10,000.5 + j4,844$$

Note: Power loss in the feeder is 0.5 watts only.

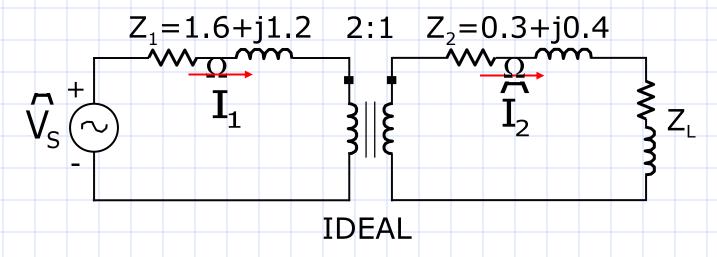


#### **Comments:**

- 1. The current in the feeder is reduced from 50.51 amps to 1.46 amps.
- 2. The voltage at the source is reduced from 238.13 volts to 220.02 volts.
- 3. In both cases, the power delivered to the load is 10 kW. However, the power supplied by the source is reduced from 10,612 watts to 10,000.5 watts.
- 4. In both cases, the reactive power delivered to the load is 4,843 Vars. However, the reactive power supplied by the source is reduced from 5,660 vars to 4,844 vars.



# **Example:** Find the P and Q supplied by the source. The transformer turns ratio is 2:1. The load impedance is $Z_1 = 8 + j6\Omega$ . Assume $V_s = 220 \angle 0^\circ \text{ V}$

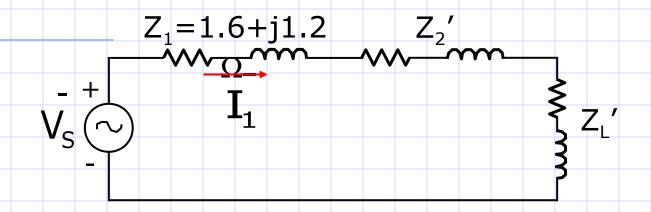


Refer impedances  $Z_2$  and  $Z_1$  to the primary side.

$$Z_2' = 2^2(0.3 + j0.4) = 1.2 + j1.6 \Omega$$
  
 $Z_L' = 2^2(8 + j6) = 32 + j24 \Omega$ 



#### Equivalent circuit referred to the primary side



The total impedance seen by the source is

$$Z_{TOT} = Z_1 + Z_2' + Z_L'$$
  
= 1.6 + j1.2 + 1.2 + j1.6 + 32 + j24  $\Omega$   
= 34.8 + j26.8 = 43.92 $\angle$ 37.6°  $\Omega$ 

The current at the primary side

$$I_1 = \frac{V_s}{Z_{TOT}} = \frac{220\angle0^{\circ}}{43.92\angle37.6^{\circ}} = 5.01\angle -37.6^{\circ} A$$

P and Q supplied by the source

$$P_s + jQ_s = V_s I_1^*$$

$$= (220 \angle 0^\circ)(5.01 \angle 37.6^\circ)$$

$$= 1102 \angle 37.6^\circ = 873 + j672$$

Thus,  $P_s = 873$  watts and  $Q_s = 672$  vars.



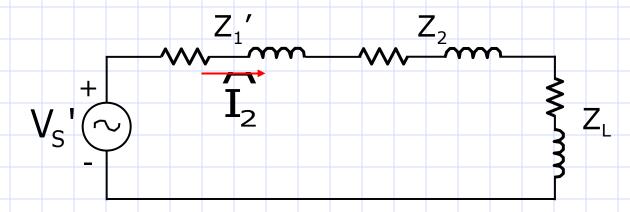
**Alternative Solution:** Refer impedance  $Z_1$  and the voltage source  $V_s$  to the secondary side. From

$$\overline{V_S} = [N_S / N_P] V_P$$
 and  $Z_S = [N_S / N_P]^2 Z_P$ 

we get 
$$V_s' = 110 \angle 0^\circ V$$

$$Z_1' = 0.4 + j0.3 \Omega$$

Equivalent circuit referred to the secondary side





The total impedance seen by the source is

$$Z'_{TOT} = Z_1' + Z_2 + Z_L$$
  
= 8.7 + j6.7 = 10.98 \(\angle 37.6^\circ \Omega

The current in the secondary side

$$I_2 = \frac{V_s'}{Z'_{TOT}} = \frac{110\angle 0^{\circ}}{10.98\angle 37.6^{\circ}} = 10.02\angle -37.6^{\circ} \text{ A}$$

P and Q supplied by the source

$$P_s'+jQ_s'=V_s'I_2^*=(110\angle0^\circ)(10.02\angle37.6^\circ)$$
  
= 1102\angle37.6\oldow = 873 + j672



**Example:** A single-phase transformer has the following nameplate rating:

50 KVA, 7620 V - 230 V

Find the primary and secondary currents when the transformer is supplying its rated KVA at 230 volts.

At the high-voltage (primary) side,

$$I_{H} = \frac{50,000}{7620} = 6.56 \text{ A RMS}$$

At the low-voltage (secondary) side,

$$I_{x} = \frac{50,000}{230} = 217.4 \text{ A RMS}$$



#### **Maximum Power Transfer**

Consider the circuit shown. The power delivered to the load is  $\sqrt[7]{s}$  maximum when

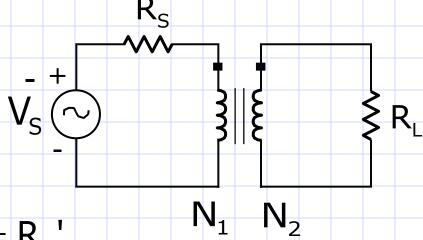
$$R_S = R_L$$

If  $R_L \neq R_S$ , use a matching transformer.

On the primary side, R<sub>L</sub> is seen by the source as

$$R_L' = \left[\frac{N_1}{N_2}\right]^2 R_L$$

For maximum power,  $R_s = R_i$ 





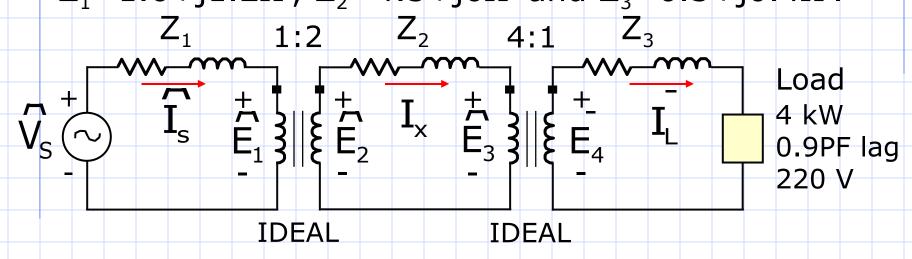
**Example:** The output stage of an audio system has an output resistance of 2 k $\Omega$ . An output transformer provides resistance matching with a 6  $\Omega$  speaker. If this transformer has 400 turns in the primary, how many secondary turns does it have?

$$R_{s} = 2,000 \Omega$$
 $R_{L} = 6 \Omega$ 
 $V_{s} \longrightarrow V_{s} \longrightarrow V_{s$ 

we get  $N_2 = 21.9 \approx 22 \text{ turns}$ 



**Example:** Find  $V_s$  and the power and reactive power supplied by the source. Assume  $Z_1=1.6+j1.2\Omega$ ,  $Z_2=4.5+j6\Omega$  and  $Z_3=0.3+j0.4\Omega$ .



Assume  $V_L = 220 \angle 0^{\circ} V$ , the reference phasor.

At the load,  $P_L=4,000$  watts.

$$Q_L = P_L \tan(\cos^{-1} 0.9) = 1,937 \text{ vars}$$



Using the complex-power formula, we get

$$I_{L} = \frac{4,000 - j1,937}{220} = 18.18 - j8.81$$
  
= 20.20\(\neq - 25.84^\circ A\)

From KVL, we get

$$E_4 = (0.3 + j0.4)I_L + V_L$$
  
= 10.1\(\angle 27.29^\circ + 220\angle 0^\circ  
= 229 + j4.63 = 229.02\(\angle 1.16^\circ V\)

Get E<sub>3</sub> and I<sub>x</sub>

$$E_{\underline{3}} = 4E_{\underline{4}} = 916.1 \angle 1.16^{\circ} \text{ V}$$
 $I_{X} = \frac{1}{4} I_{L} = 5.05 \angle - 25.84^{\circ} \text{ A}$ 



#### Another KVL,

$$E_2 = (4.5 + j6.0)I_X + E_3$$

= 
$$(7.5 \angle 53.13^{\circ})(5.05 \angle -25.84^{\circ} + E_{3}^{\circ})$$

$$= 949.6 + j35.9 = 950.25 \angle 2.16^{\circ} V$$

Get E<sub>1</sub> and I<sub>s</sub>

$$E_{\underline{1}} = \frac{1}{2}E_{\underline{2}} = 475.12\angle 2.16^{\circ} \text{ V}$$
 $I_{\underline{S}} = 2I_{\underline{X}} = 10.10\angle - 25.84^{\circ} \text{ A}$ 



From KVL,

$$V_S = (1.6 + j1.2)I_S + E_1$$

$$= 494.6 + j21.81 = 495.1 \angle 2.52^{\circ} V$$

The complex power supplied by the source is

$$P_s + jQ_s = V_s I_s^*$$

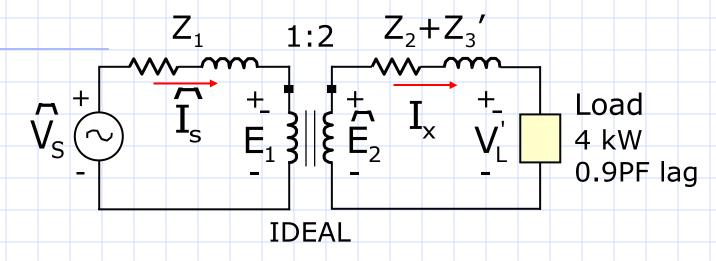
$$= (495.1 \angle 2.52^{\circ})(10.10 \angle 25.84^{\circ})$$

$$= 5,000 \angle 28.37^{\circ} = 4,400 + j2,376$$

**Alternative Solution:** First, refer  $Z_3$  and the load to the primary side of the second transformer.



#### **Equivalent Circuit**



$$Z_3' = 4^2 Z_3 = 16(0.3 + j0.4) = 4.8 + j6.4 \Omega$$
  
 $V_L' = 4V_L = 880 \angle 0^{\circ} V$ 

$$Z_{eq} = Z_2 + Z_3'$$

$$= 4.5 + j6 + 4.8 + j6.4 = 9.3 + j12.4 \Omega$$



Next, refer  $Z_{eq}$  and the load to the primary side of the first transformer. We get the circuit below.

$$Z_1+Z_{eq}'$$
 $T_1+Z_{eq}'$ 
 $T_2+Z_{eq}'$ 
 $T_3+Z_{eq}'$ 
 $T_4+Z_{eq}'$ 
 $T_5+Z_{eq}'$ 
 $T_5+Z_{eq}'$ 

$$Z_{eq}' = \frac{1}{4} Z_{eq} = \frac{1}{4} (9.3 + j12.4) = 2.325 + j3.1 \Omega$$

$$V_{L}'' = \frac{1}{2} V_{L}' = 440 \angle 0^{\circ} V$$

$$I_{S} = \frac{4,000 - j1,937}{440} = 9.09 - j4.4$$

$$= 10.10 \angle -25.84^{\circ} A$$



From KVL, we get

$$V_s = (Z_1 + Z_{eq}')I_s + V_L''$$

$$= (3.925 + j4.30)I_s + 440 \angle 0^\circ$$

$$= 494.6 + j21.81 = 495.1 \angle 2.52^\circ V$$

The complex power supplied by the source is

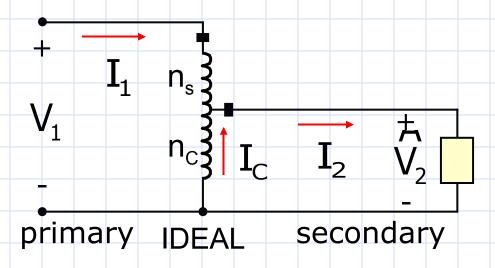
$$P_s + jQ_s = V_s I_s$$

$$= (495.1 \angle 2.52^{\circ})(10.10 \angle 25.84^{\circ})$$

$$= 5,000 \angle 28.37^{\circ} = 4,400 + j2,376$$

## **Autotransformer**

The autotransformer has only one winding and a portion of this winding is common to the primary and secondary sides.



Let  $n_c$  = number of turns of the common winding  $n_s$  = number of turns of the series winding



Then,  $N_1 = n_s + n_c = number$  of turns of the primary

 $N_2 = n_c = number of turns of the secondary$ 

From voltage division, we get

$$\frac{V_1}{V_2} = \frac{n_S + n_C}{n_C}$$

or

$$\frac{\mathsf{V}_1}{\mathsf{V}_2} = \frac{\mathsf{N}_1}{\mathsf{N}_2}$$

In order for ampere-turns to be balanced,

$$n_{S}I_{1}=n_{C}I_{C} \qquad (a)$$



From KCL, we have

$$\underline{I_1} + \underline{I_C} = \underline{I_2}$$
 or  $\underline{I_C} = \underline{I_2} - \underline{I_1}$ 

Substitution in (a) gives

$$\mathsf{n}_{\mathsf{S}}\mathsf{I}_{\mathsf{1}}=\mathsf{n}_{\mathsf{C}}(\mathsf{I}_{\mathsf{2}}-\mathsf{I}_{\mathsf{1}})$$

or

$$(n_S + n_C)I_1 = n_CI_2$$

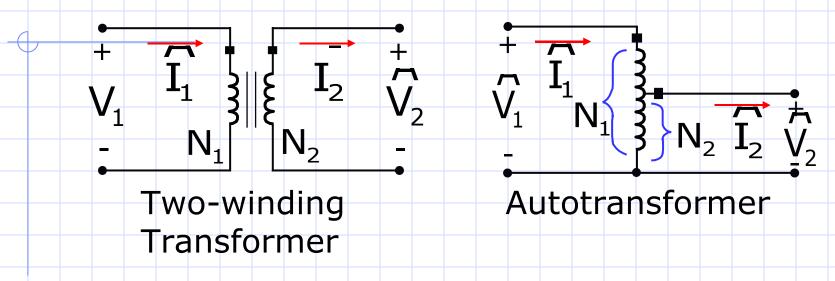
which reduces to

$$N_1I_1 = N_2I_2$$

**Note:** The primary and secondary ampere-turns are balanced.



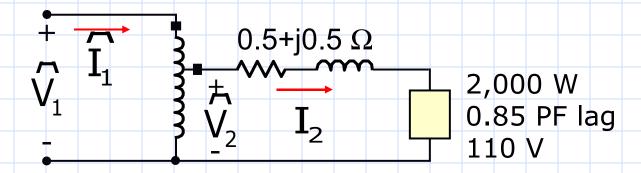
## Comparison



Assuming ideal transformers, the equations for both are identical. We get

$$\frac{V_1}{V_2} = \frac{N_1}{N_2} \quad \text{and} \quad \frac{I_1}{I_2} = \frac{N_2}{N_1}$$

**Example:** For the ideal autotransformer shown, find  $V_1$ ,  $P_1$  and  $Q_1$ . The voltage rating of the transformer is 220-110 volts.



At the load,  $P_L = 2,000$  watts

$$Q_L = P_L \tan(\cos^{-1} 0.85) = 1,240 \text{ vars}$$
 $I_2 = \frac{2,000 - j1,240}{110} = 18.18 - j11.27$ 
 $= 21.39 \angle - 31.79^{\circ} \text{ A}$ 



From KVL, we get

$$V_2 = (0.5 + j0.5)I_2 + V_L$$
  
= 124.72 + j3.46 = 124.77\(\angle 1.59^\circ\) V

At the primary side,

$$V_{\frac{1}{2}} = 2V_{2} = 249.54 \angle 1.59^{\circ} V$$
 $I_{1} = \frac{1}{2} I_{2} = 10.7 \angle -31.79^{\circ} A$ 
 $P_{1} + jQ_{1} = V_{1}I_{1}^{*}$ 
 $= (249.54 \angle 1.59^{\circ})(10.7 \angle 31.79^{\circ})$ 
 $= 2,669 \angle 33.38^{\circ} = 2,229 + j1,469$ 

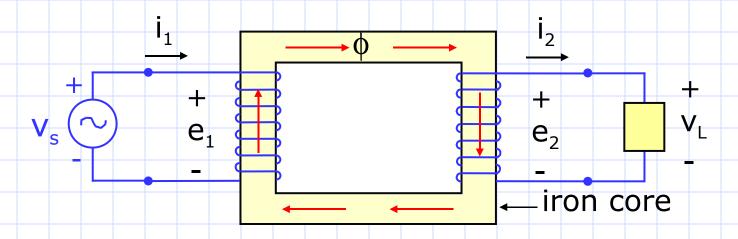


## **Practical Transformer**

- 1. Both coils 1 and 2 have a small resistance.
- 2. There are leakage fluxes in coils 1 and 2.

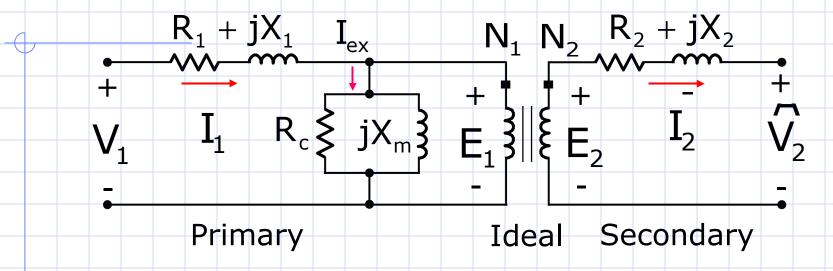
There is resistance loss in the iron core.

4. The permeability of the iron is high but not infinite. The exciting current  $(i_{ex})$  is not zero.





## **Equivalent Circuit**



 $R_1$ ,  $X_1$ =primary winding resistance and leakage reactance

R<sub>2</sub>, X<sub>2</sub>=secondary winding resistance and leakage reactance

 $R_c$ ,  $X_m$ =core resistance and magnetizing reactance



In many cases,  $R_c$  and  $X_m$  are neglected. A fixed core loss may be specified to take into account the power dissipated in  $R_c$ .

**Note:** The voltage equation is applied to  $E_1$  and  $E_2$ .



It is also possible to refer all impedances to the primary side. The equivalent circuit reduces to

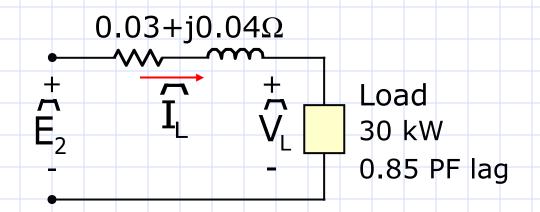
where

$$a = \frac{N_1}{N_2}$$

$$R_{eq} = R_1 + a^2R_2 = Total winding resistance, referred to the primary side$$

$$X_{eq} = X_1 + a^2 X_2 = Total winding reactance, referred to the primary side$$

**Example:** A single-phase transformer has the following nameplate rating: 50 KVA, 7620-230 V,  $Z_{eq}$ =0.03+j0.04  $\Omega$ , referred to the low-voltage side. The transformer supplies 30 kW at 0.85 pf lag to a load whose voltage is 225 volts. Find the input voltage, power, reactive power and efficiency.



Let  $V_1 = 225 \angle 0^{\circ} V$ , the reference phasor.



At the load,  $P_1 = 30,000$  watts

$$Q_L = P_L \tan(\cos^{-1} 0.85) = 18,592 \text{ vars}$$

$$I_L = \frac{30,000 - j18,592}{225} = 133.33 - j82.63$$
 $= 156.86 \angle -31.79^{\circ} A$ 

From KVL, we get

$$E_2 = (0.03 + j0.04)I_L + V_L$$
  
= 232.3 + j2.85 = 232.32\(\angle 0.7^\circ V\)



At the input side, we get

$$P_{in} + jQ_{in} = E_{2}I_{L}^{*}$$

$$= (232.32\angle 0.7^{\circ})(156.86\angle 31.79^{\circ})$$

$$= 36,443\angle 32.49^{\circ} = 30,738 + j19,577$$

Thus,  $P_{in}=30,738$  watts and  $Q_{in}=19,577$  vars.

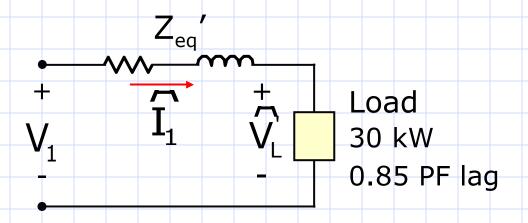
The transformer efficiency

Eff = 
$$\frac{P_L}{P_{in}} = \frac{30,000}{30,738} = 97.6\%$$

**Note:** Transformers are designed to have a high efficiency.



We can also refer all quantities to the High Voltage side. The equivalent circuit is shown below.



where

$$a = 7620/230 = 33.13$$

$$Z_{eq}' = a^2(0.03 + j0.04) = 32.93 + j43.9 \Omega$$

$$V_1' = a(225\angle 0^\circ) = 7,454\angle 0^\circ V$$



At the load, P<sub>1</sub> and Q<sub>1</sub> are unchanged. We get

$$I_1 = \frac{30,000 - j18,592}{7454} = 4.02 - j2.49$$
  
=  $4.73 \angle - 31.79^{\circ}$  A

At the input side, we get

$$V_1 = (32.93 + j43.9)I_1 + V_L'$$
  
= 7,696 + j94.6 = 7,697\(\angle 0.7^\circ\) V

$$P_{in} + jQ_{in} = V_1^{-*}I_1^{*}$$

$$=(7,697\angle0.7^{\circ})(4.73\angle31.79^{\circ})$$

$$= 36,443 \angle 32.49^{\circ} = 30,738 + j19,577$$

