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Second-Order Transients

The solution can be shown to be an exponential of 
the form

stKx ε=

Consider the homogeneous differential equation 

0cx
dt
dx

b
dt

xd
a 2

2

=++

with initial conditions x(0)=X0 and           =X’0.)0(
xt
dx

where K and s are constants. Substitution gives

0cKbsKKas ststst2 =ε+ε+ε
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After canceling the exponential term, we get the 
characteristic equation

0cbsas2 =++
Using the quadratic formula, we get the two roots

a2
4ac-bb-

s,s
2

21
±=

Assuming the roots are real and distinct, the 
solution will consist of two exponentials. Thus 

ts
2

ts
1

21 KK)t(x ε+ε=
K1 and K2 can be evaluated using x(0) and      (0). 

dt
dx
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Source-Free Series RLC Network
Consider the circuit 
shown. From KVL, we 
get for t ≥  0

0idt
C
1

Ri
dt
di

L =++ ∫

Differentiating, we get

0i
C
1

dt
di

R
dt

id
L 2

2

=++

This is a homogeneous second-order differential 
equation.

R

iE
+

-
vC

+

-

L

C

t=0
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The characteristic equation is

0
C
1

RsLs2 =++

0
LC
1

s
L
R

s2 =++
or

From the quadratic formula, we get the two roots

LC
1

L2
R

L2
R

s,s
2

21 −




±−=

Note: There are three types of root depending on 
the value of the term inside the square root sign.
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1. Overdamped Case: The roots are real and 
distinct when

LC
1

L2
R

2

>






ts
2

ts
1

21 KK)t(x ε+ε=
The solution is the sum of two exponential terms

2. Critically Damped Case: The roots are real but 
repeated when

LC
1

L2
R

2

=





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st
21 )KtK()t(x ε+=

The solution can be shown to be

LC
1

L2
R

2

<






3. Underdamped Case: The roots are complex 
conjugates when

d21 j-s,s ω±α=

)t sinKt cosK()t(x d2d1
t- ω+ωε= α

If the roots are                           , the solution can 
be shown to be
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Comparison of Responses

overdamped

 critically damped

underdamped
underdamped envelope response

e-α t
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From KVL, we get 
for t ≥  0, 

0=++ cvRiL
dt
di

Since the circuit has reached steady-state at t=0,  
i(0+)=0 and vC(0+)=12V. Substitution gives

A/s 
dt
di

12
0

0 −=−=
+

+

L
)(v

)( c

Example: The circuit has reached steady-state 
when the switch is moved at t=0. Find

)0(
dt
di +i(0+) and          . R

i12V
+

-
vC

+

-

1H

C

t=0
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The characteristic equation is thus

016s10s2 =++

From KVL, we get for t ≥  0, 

0idt1610i
dt
di

1 =++ ∫

Differentiating the 
equation, we have 

0i16
dt

di
10 =++

2

2

dt

id

whose roots are s1=-2 and s2=-8.

Example: The circuit 
has reached steady-
state. At t=0, the  
switch is moved. 
Find i(t) for t ≥  0.

F 
16
1

10Ω

i12V
+

-
vC

+

-

1Ht=0
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The roots are s1=-2 and s2=-8. Thus, we get
8t - 

2
2t - 

1 KK)t(i ε+ε=
and

8t - 
2

2t - 
1 K8K2

dt
di ε−ε−=

From the previous example, we’ve found that at 
t=0+, 

A/s 12)(0
dt
di −=+i(0+)=0  and

Substitution gives

21 KK0)i(0 +==+

21 8K--2K12)(0
dt
di =−=+
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Solving simultaneously, we get K1=-2 and K2=2. 
Thus,

0 t   Amp  2ε-2εi(t) 8t- 2t- ≥+=

Note: For an over-damped case, the solution 
consists of two distinct exponential terms.
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The characteristic equation can be shown to be

016s8s2 =++

whose roots are s1=-4 and s2=-4. Thus, we get

4t- 
3

4t- 
2

4t- 
1 KKK)t(i ε=ε+ε=

A single exponential solution will not work since the 
original differential equation is second-order.

Example: The circuit 
has reached steady-
state. At t=0, the  
switch is moved. 
Find i(t) for t ≥  0.

F 
16
1

8Ω

i12V
+

-
vC

+

-

1Ht=0
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Assume                   . Differentiating twice, we get4t- )t(y)t(i ε=
4t- 4t-  )t('y )t(y-4

dt
di ε+ε=

4t- 4t- 4t- 
2

2

 )t(''y )t('y 8- )t(y 16
dt

id ε+εε=

The original differential equation is

0i16
dt
di

8
dt

id
2

2

=++

-4t-4t-4t  )t(''y (t)8y'- )t(y160 ε+εε=
-4t-4t4t-  16y(t) )t('y8 32y(t)- ε+ε+ε

Substitution gives
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Integrating twice, we get

1K)t('y =
or

21 KtK)t(y +=

Simplifying, we get

0 )t(''y 4t- =ε

0(t)'y' =
or

4t- )t(y)t(i ε=

Finally, the solution is

4t- 
2

4t- 
1  K tK)t(i ε+ε=

or
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Differentiating the solution, we get

4t- 
2

4t- 
1

4t- 
1 4K-K t-4K

dt
di εε+ε=

We get K1=-12 and K2=0. Thus

0t    Amp   - 4t- ≥ε= t)t(i 12

2K00)0(i +==+

21 4K-K0-12)(0
dt
di +==+

The initial conditions are i(0+)=0 and           =-12 
A/sec. Substitution gives

)0(
dt
di +

4t- 
2

4t- 
1  K tK)t(i ε+ε=
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The characteristic equation can be shown to be

016s6s2 =++
whose roots are s1, s2=-3 ± j2.65. Thus, we get

j2.65)t - (-3 
2

j2.65)t  (-3 
1 KK)t(i ε+ε= +

or

)KK()t(i t j2.65- 
2

t j2.65 
1

3t- ε+εε=

Example: The circuit 
has reached steady-
state. At t=0, the  
switch is moved. 
Find i(t) for t ≥  0.

F 
16
1

6Ω

i12V
+

-
vC

+

-

1Ht=0
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Euler’s Identities: 

x sin j  x cosjx +=ε(1)
x sin j - x cosjx =ε−(2)

To prove the first identity, let y=cos x + j sin x. 
Differentiating, we get

x cos j  x -sin
dx
dy +=

x) sin j  x (cos j +=
x cos j  x sin j

dx
dy 2 +=

and since             , the equation can be re-written 
as

1j −=
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We get y j
dx
dy =

Integrating both sides, we get

K  x jy ln +=

dx jdy
y
1 =

or

Evaluate K. When x=0, y=1.

0Kor          K  j01 ln =+=

Thus we get ln y = jx, or x sin j  x cosjx +=ε

Note: The other Euler’s identity can be verified 
following the same analysis. 
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Back to the expression for the current

)KK()t(i t j2.65- 
2

t j2.65 
1

3t- ε+εε=

tsinjKtcosK [ )t(i 11
t3 ω+ωε= −

]tsinjKtcosK 22 ω−ω+

From Euler’s identities, we get

where ω  = 2.65. Combining the two cosine terms 
and the two sine terms, we get

] tsinKtcosK [ )t(i 43
t3 ω+ωε= −

where K3 = K1+K2 and K4 = j(K1-K2).
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We get

0t   Amp    2.65  4.54εi(t) 3t ≥−= − tsin

3K0)0(i ==+

4.54Kor       ωK12)(0
dt
di

44 −==−=+

The initial conditions are i(0+)=0 and           =-12 
A/sec. Substitution gives

)0(
dt
di +

Differentiate to get

] tcosKtsinK[ 
dt
di

43
t3 ωω+ωω−ε= −

] tsinKtcosK [ 3 43
t3 ω+ωε− −
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Plot of the Currents  

R=8Ω

R=6Ω

R=10Ω

Overdamped

Critically damped

Underdamped
time

i(t)
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Source-Free Parallel RLC Network

Differentiating, we get

0v
L
1

dt
dv

R
1

dt
vd

C 2

2

=++

This is a homogeneous second-order differential 
equation.

0vdt
L
1

v
R
1

dt
dv

C =++ ∫

Consider the circuit 
shown. From KCL, 
we get for t ≥  0 RIu(-t) v

+

-

CL
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0
LC
1

s
RC
1

s2 =++
or

Note: We get three types of root depending on the 
value of the term inside the square root sign.

The characteristic equation is

0
L
1

s
R
1

Cs2 =++

From the quadratic formula, we get the two roots

LC
1

RC2
1

2RC
1

-s,s
2

21 −




±=
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Example: Find v(t) 
for t ≥  0. Assume 
the circuit has 
reached steady-
state at t=0.

u(-t) v
+

-Ω 
8
1

H 
8
1 2F

First we need to find v(0+) and            .)(0
dt
dv +

1A vC(0-)
+

-
Ω 

8
1 iL(0-)

At t=0-, the circuit 
has reached steady-
state.

Since the inductor is shorted, vC(0-) = 0 V and 
iL(0-) = 1A. Thus, v(0+) = 0 V.
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The equivalent circuit at t > 0 is

v
+

-
Ω 

8
1 H 

8
1

2FiL 0vdt88v
dt
dv

2 =++ ∫

From KCL we get,

We have found that v(0+) = 0 V and iL(0+) = 1A. 

)(0
dt
dv +Substitution gives            = -0.5  V/s.

08v
dt
dv

8
dt

vd
2 2

2

=++

Next, we solve the differential equation describing 
the circuit. Differentiating our KCL equation we 
get
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The characteristic equation is 2s2 + 8s + 8 = 0
whose roots are s1 = s2 = -2.

We have shown that for repeated roots, the 
solution is of the form

v(t) = K1ε -2t + K2tε -2t

and 2t- 
2

2t- 
2

2t- 
1 tε2K-εKε-2K

dt
dv +=

Evaluating the solution and its derivate at t=0+ and 
substituting the initial conditions v(0+)=0 V and

V/s 0.5-  )(0
dt
dv =+ we get K1 = 0 and K2 = -0.5.  

Thus,           v(t) = -0.5tε -2t   V          t > 0
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Higher-Order Transients

The solution can be shown to be an exponential of 
the form stKx ε=
where K and s are constants.

Consider the homogeneous differential equation 

0xa
dt
dx

a...
dt

xd
a

dt
xd

a 011n

1n

1nn

n

n =++++ −

−

−

with initial conditions x(0)=X0,           =X’0)0(
xt
dx

'''''''
01n

1n

X)0(
dx

xd =−

−
''
02

2

X)0(
dt

xd = , …
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Substitution gives

0KasKa...KsaKsa st
0

st
1

st1n
1n

stn
n =ε+ε++ε+ε −

−

After canceling the exponential term, we get the 
characteristic equation.

0asa...sasa 01
1n

1n
n

n =++++ −
−

This is a polynomial of nth order and there will be n 
roots. The type of response will depend on the 
values of these roots. Assuming all the n roots are 
real and distinct, the solution can be shown to be 

ts
n

ts
1n

ts
2

ts
1

n1n21 KK...KKx ε+ε++ε+ε= −
−
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The roots of the characteristic equation can be 
shown to be s1=-2, s2=-4 and s3=-8. 

Example: Consider the differential equation

0v64
dt
dv

56
dt

vd
14

dt
vd

2

2

3

3

=+++

with initial conditions v(0)=7 volts,     (0)=-24 v/s 
dt
dv

and      (0)=112 v/s2. Find v(t).2

2

dt
vd

064s56s14s 23 =+++

The characteristic equation is 
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-8t
3

-4t
2

-2t
1 KKK)t(v ε+ε+ε=

Since the roots are real and distinct, the solution is

Differentiating twice, we get

8t-
3

4t-
2

2t-
1 K8K4K2

dt
dv ε−ε−ε−=

8t-
3

4t-
2

2t-
12

2

K64K16K4
dt

vd ε+ε+ε=

Evaluate the expressions for v,      and       at t=0 
and use the initial conditions. dt

dv
2

2

dt
vd
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321 K8K4K224)0(
dt
dv −−−=−=

3212

2

K64K16K4112)0(
dt

vd ++==

Solving simultaneously, we get K1=4, K2=2 and 
K3=1. The final solution is  

V   124)t(v -8t-4t-2t ε+ε+ε=

321 KKK7)0(v ++==

We get
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Example: Consider the differential equation

0i32
dt
di

32
dt

id
10

dt
id

2

2

3

3

=+++

032s32s10s 23 =+++

The characteristic equation is 

The roots of the characteristic equation can be 
shown to be s1=-2, s2=-4 and s3=-4. The solution 
is -4t

3
-4t

2
-2t

1 KtKK)t(i ε+ε+ε=

The constants K1, K2 and K3 can be evaluated if the 
values of i, di/dt and d2i/dt2 are known at t=0.
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Example: Consider the differential equation

08i
dt
di

24
dt

id
28

dt
id

17
dt

id
6

dt
id

2

2

3

3

4

4

5

5

=+++++

0824s28s17s6ss 2345 =+++++

The characteristic equation is 

)t3cosKt3sin(KεεKtεKεKi(t) 4
t-2t-

3
t-

2
t-

1 5++++=

The solution is of the form

The roots of the characteristic equation are

3j-1s,s  and  -2s 1,-  s -1,s 54321 ±====
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Getting the Differential Equation

Using nodal analysis or loop analysis, write the 
KCL or KVL equations that describe the circuit.

1.

Differentiate the equations, if necessary, to 
eliminate any integral expressions.

2.

In every equation, replace the derivatives with 
operators.

3.

Eliminate all variables, except one, using any 
appropriate method.

4.

Simplify as necessary and replace the operators 
with the corresponding derivative terms.

5.
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∫ ∞−
=−++

t

122
2 0dt)ii(16i10

dt
di

Mesh 2:

Mesh 1: ∫ ∞−
=−+

t

211 )t(vdt)ii(16i8

First, write the mesh equations for the circuit.

Then, differentiate the mesh equations to eliminate 
the integrals.

Example: Find the 
differential equations 
that describe the 
mesh currents i1 and 
i2 in the network 
shown.

1H

v(t)
+

-

8Ω

i1 i2 10ΩF
16
1
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Next, multiply equation (1) by 16 and equation (2) 
by (8D+16), then add the resulting equations. This 
will eliminate the current variable i1.

0i)16D10D(i16 2
2

1 =+++− (2)

)t(v
dt
d

i16i16
dt
di

8 21
1 =−+

We get

(a)

0i16
dt
di

10
dt

id
i16 2

2
2
2

2

1 =+++− (b)

)t(Dvi16i )16D8( 21 =−+ (1)

Using operators, let D=    . Substitution gives
dt
d
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We get

)t(Dv16i )D288D96D8( 2
23 =++

which simplifies to

)t(v2i )36D12D( 2
2 =++

The differential equation for the current i2 is

)t(v2i 36
dt
di

12
dt

id
2

2
2
2

2

=++

)t(Dvi16i )16D8( 21 =−+ (1)16

0i)16D10D(i16 2
2

1 =+++− (2)(8D+16)
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)t(v)16D10D(Di )D288D96D8( 2
1

23 ++=++
which simplifies to

)t(v)16D10D(i )36D12D( 2
8
1

1
2 ++=++

The differential equation for current i1 is

2

2

1
1

2
1

2

dt
)t(vd

125.0i 36
dt
di

12
dt

id =++

)t(v2
dt

)t(dv
25.1 ++

Similarly, if we multiply equation (2) by 16 and 
equation (1) by (D2+10D+16), then add the 
resulting equations, we will eliminate  the current 
variable i2. We get
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2
2

8
5

2
2

2

16
1

1 i
dt
di

dt
id

i ++=

Alternative Procedure: First, solve for i1 from (b) 
and differentiate the resulting equation. We get

Next, substitute the equations in (a). We get

)t(v2i 36
dt
di

12
dt

id
2

2
2
2

2

=++

A similar procedure, applied on equation (a), will 
result in the differential equation for current i1.

dt
di

dt
id

dt
id

dt
di 2

2
2

2

8
5

3
2

3

16
11 ++=

and
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∫ ∞− =+−t
210

1
12 0v)dtv(vNode 2:

Node 1: ∫ ∞− =−++− t
21

1
16
1

S18
1 0)dtv(v

dt
dv

)v(v

First, write the node equations for the circuit.

Then, differentiate the node equations to eliminate 
the integrals.

Example: Find the 
differential equations 
that describe the node 
 voltages v1 and v2 in 
the network shown.

1H

vS(t)
+

-

8Ω v1 v2

10ΩF
16
1

REF
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01)v(0.1Dv 21 =++− (2)

S21
2 Dv16vv 16)2D(D 2=−++ (1)

Substituting the D operator, 

We get

0=−++− 212
1

2

16
1

S18
1 vv

dt
vd

)v(v
dt
d

(b)0
dt

dv
vv 2

10
1

12 =+−and

dt
dv

216v16v
dt
dv

2
dt
vd S

21
11

2

=−++ (a)or
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(t)20v36v
dt
dv

12
dt
vd

S2
22

2

=++

Thus, the differential equation for v2 is

S22
2 2Dv16v1)v(0.1D 16)2D(D =−+++

Substituting equation (3) into equation (1),

21 1)v(0.1Dv +=
We can write v1 in terms of v2 from equation (2),

(3)

Distributing terms and simplifying, we get

(D2 + 12D + 36)v2  =  20vS (4)
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(t)20v
dt

(t)dv
236v

dt
dv

12
dt

vd
S

S
1

1
2
1

2

+=++

Thus, the differential equation for v1 is

362DD
20v

v 2
S

2 ++
=

1

Re-write equation (4) to get the equation for v2, 

Substituting into equation (3) and re-arranging 
terms we get

(D2 + 12D + 36)v1  =  2DvS + 20vS
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The Characteristic Equation

The roots of the characteristic equation give the 
form of the solution to the non-homogenous 
differential equation. This is generally 

ts
n

ts
2

ts
1t

n21 εK...εKεKx +++=
and is known as the transient response. The 
solution is a sum of n exponential terms, where 
n is the order of the differential equation.

An electric circuit will have a single characteristic 
equation for all current or voltage variables in the 
circuit.

sn + an-1sn-1 + … a1s + a0  = 0
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Example: In our 
previous example we 
have found the 
differential equations 
for mesh currents i1 
and i2 and node 
voltages v1 and v2.

1H

vS(t)
+

-

8Ω v1 v2

10ΩF
16
1

REF

i1 i2

The differential equation for the mesh currents are

(t)2v
dt

(t)dv
dt

(t)vd
i 36

dt
di

12
dt

id
S

S
0.8
1

2
S

2

8
1

1
1

2
1

2

++=++

(t)2vi 36
dt
di

12
dt

id
S2

2
2
2

2

=++
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(t)20v
dt

(t)dv
236v

dt
dv

12
dt
vd

S
S

1
11

2

+=++

(t)20v36v
dt
dv

12
dt
vd

S2
22

2

=++

The differential equation for the node voltages are

The characteristic equation for this circuit is
S2 + 12s + 36 = 0

with repeated roots s1 = s2 = -6. 

Thus, the transient response of all currents and 
voltages in this circuit is of the form

x(t) = K1ε -6t + K2tε -6t 
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Example: The switch is moved from b to a at t=0. 
Find the differential equations that describe the 
voltages v1 and v2 for t ≥  0.

4Ω

E
+

-

t=0

a

1H

b
v(t)

+

-
F

4
16Ω

REF

+v1

+v2

From KCL, we get 
for t ≥  0 

0dtv
6

v-v
1

21 =+ ∫Node 1: (1)

0
dt
dv

4
1

6
vv

4
v(t)-v 2122 =+−+Node 2: (2)
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Differentiate (1) and re-write the equations. We get 
the differential equations

0
dt

dv
6
1

v
dt
dv

6
1 2

1
1 =−+

)t(v
4
1

v
12
5

dt
dv

4
1

v
6
1

- 2
2

1 =++

)t(v3v5
dt
dv

3v2- 2
2

1 =++

0
dt
dv

v6
dt
dv 2

1
1 =−+

The equations can be simplified into

0Dv6)v(D 21 =−+

)t(v3)v5(3D2v- 21 =++
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Using operators, we get

0Dv6)v(D 21 =−+ (1)

)t(v3)v5(3D2v- 21 =++ (2)

Multiply equation (1) by (3D+5) and (2) by D, then 
add the resulting equations. This will eliminate the 
variable v2. We get

)t(Dvv)10D7D( 1
2 =++

which yields the differential equation for v1.

)t(v
dt
d

v10
dt
dv

7
dt

vd
1

1
2
1

2

=++
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or

)t(v6)t(v
dt
d

v10
dt
dv

7
dt

vd
2

2
2
2

2

+=++

)t(v)6D(v )10D7D( 2
2 +=++

Multiply equation (1) by 2 and (2) by (D+6), then 
add the resulting equations. This will eliminate the 
variable v1. We get

Note: The characteristic equation for v1 and v2 is 
the same. 
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For t ≥  0, we get from KVL

)t(vdt )ii(20i4 211 =−+ ∫
Differentiating,

dt
)t(dv

i20i20
dt
di

4 21
1 =−+

0i20i20
dt

id
122

2
2

=−+

3Ω

t=0

1H
v(t)

+

-

F
20
11

Ω i1 i2

Example: At t=0, the 
switch is opened. Find the 
differential equations that 
describe the currents i1 
and i2 for t ≥  0.

0dt )ii(20
dt
di

12
2 =−+ ∫and
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)t(Dvi20i )20D4( 21 =−+

Using operators, we get

(1)

0i )20D(i20 2
2

1 =++− (2)

Multiply equation (1) by (D2+20) and (2) by 20, 
then add the resulting equations. This will eliminate 
the variable i2. We get

)t(v )5D(i )20D5D( 2
4
1

1
2 +=++

The differential equation for i1 is

)t(v 5
dt

)t(vd
i 20

dt
di

5
dt

id
2

2

4
1

1
1

2
1

2

+=++
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Multiply equation (1) by 20 and (2) by (4D+20), 
then add the resulting equations. This will eliminate 
the variable i1. We get

)t(v5i )20D5D( 2
2 =++

The differential equation for i2 is

)t(v5i 20
dt
di

5
dt

id
2

2
2
2

2

=++
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Complete Response:
   1. Steady-state Response
   2. Transient Response

Why Get Initial Conditions?

Transient Response: General form is exponential
ts

n
ts

1n
ts

2
ts

1
n1n21 KK...KKx ε+ε++ε+ε= −

−

where K1, K2, … Kn are arbitrary constants.

Answer: The initial conditions are necessary in the 
determination of the numerical values of the 
arbitrary constants K1, K2, … Kn. 
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Evaluating Initial Conditions

5. Use the KVL and KCL equations for t ≥  0 and  
    their derivatives, plus the inductor currents  
    and capacitor voltages at t=0+ to evaluate 
    the required initial conditions.

1. Assume switching operation at t=0.

2. Evaluate the inductor currents and capacitor    
    voltages at t=0-.

3. Find inductor currents and capacitor voltages  
    at t=0+.

4. Write the KVL and KCL equations describing the 
    network for t ≥  0.
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0)0(v

A1.0)0(i

C

ss,L

=

==

−

−  
1k

100

Example: The circuit has reached steady-state 
condition with the switch in position a. At t=0, the 
switch is moved to position b. If the capacitor is 
initially uncharged, find i(0+),

).0(
dt

id
       )0(

dt
di

2

2
++ and 

1kΩ

i100V
+

-

t=0

a

1H0.1µ F

b

The circuit is at steady 
state for t<0. 1kΩ

iL,ss100V
+

-
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0idt
C
1

Ri
dt
di

L =++ ∫(1)

whose derivative is

0i
C
1

dt
di

R
dt

id
L 2

2

=++(2)

At t=0+,

A 1.0i)0(i ss,L ==+

0)0(vC =+

From KVL, we get for t ≥  0, 
1kΩ

i 1H0.1µ F
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From (2), we get

)]0(i
C
1

)0(
dt
di

R [
L
1

-)0(
dt

id
2

2
+++ +=

2kA/s -900=

0
From (1), we get at t=0+

0)0(v)0(Ri)0(
dt
di

L C =++ +++

which gives

A/s 100)0(i
L
R

)0(
dt
di −=−= ++
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A 4
30
120

)0(i -
L ==

V 80)0(i20)0(v L
-

C == −

t=0

i1 i2

10Ω
120V

+

- 1H

20Ω

1µ
F

20Ω

and            . )0(
dt
di2 +

Example: The network is initially at steady-state 
condition with the switch open. At t=0, the switch 
is closed. Find i1(0+), i2(0+),

)0(
dt
di1 +

At t=0-, we get

iL(0-)

10Ω

120V
+

-

20Ω
+

-
vC(0-)
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For t ≥  0, we get from KVL

i1 i2120V
+

- 1H

20Ω

1µ
F

20Ω

 At t=0+, we get

A 4)0(i)0(i -
L1 ==+

V 80)0(v)0(v -
CC ==+

120i20
dt
di

1
1 =+(1)

120dti10i20
t

2
6

2 =+ ∫ ∞−
(2)

From equation (2), we get

A 2)]0(v120[)0(i C20
1

2 =−= ++
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From equation (1), we get

A/s 40)0(i20120)0(
dt
di

1
1 =−= ++

To get an equation involving      , differentiate (2). 
We get dt

di2

0i10
dt
di

20 2
62 =+

 At t=0+, we get

kA/sec  -100)0(
dt
di2 =+

120i20
dt
di

1
1 =+(1) 120dti10i20

t

2
6

2 =+ ∫ ∞−
(2)
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dt
di1

Example: The network is initially unenergized. At 
t=0, the switch is closed. Determine i1(0+), i2(0+),

(0+) and      (0+).
dt
di2

i1E
+

-

t=0

i2R1 L

R2C

For t ≥  0, we get from 
KVL,  

E)ii(Rdti
C
1

2111 =−+∫(1)

0iRi)RR(
dt
di

L 11221
2 =−++(2)
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Since the circuit is initially unenergized, we know 
that vC(0+)=0 and iL(0+)=0. Thus 

0)0(i2 =+

From (1), we get

E)0(iR)0(iR)0(v 2111C =−+ +++

or

1
1 R

E
)0(i =+

E)ii(Rdti
C
1

2111 =−+∫(1)

0iRi)RR(
dt
di

L 11221
2 =−++(2)
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0)0(i2 =+

1
1 R

E
)0(i =+

From (2), we get

0)0(iR)0(i)RR()0(
dt
di

L 11221
2 =−++ +++

E)ii(Rdti
C
1

2111 =−+∫(1)

0iRi)RR(
dt
di

L 11221
2 =−++(2)

L
E

)0(i 
L
R

)0(
dt
di

1
12 == ++

which gives
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Differentiate equation (1). We get

0
dt
di

R
dt
di

Ri
C
1 2

1
1

11 =−+

 At t=0+, we get

0)0(
dt
di

R)0(
dt
di

R)0(i
C
1 2

1
1

11 =−+ +++

or

CR
E

L
E

)0(
dt
di

2
1

1 −=+

E)ii(Rdti
C
1

2111 =−+∫(1)

0iRi)RR(
dt
di

L 11221
2 =−++(2)
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)0(imA 9)0(i L
-

L
+==

V 18)(0v)0(v -
C2

-
1C =+

Equivalent circuit at t=0-

E
+

-

R1

R2

iL(0-)

vC1(0-)

vC2(0-)

+

-
+

-

Example: The network 
has reached steady-
state condition with the 
switch open. At t=0, the 
switch is closed. Find 
the necessary initial 
conditions for mesh 
currents i1, i2, and i3.

i1

i2
E

+

-
1H

C1

R2=1kΩ

C2i3

R1=2kΩ

E=27V   C2=2C1=2µ F
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For t<0, C1 and C2 are in series. Thus, iC1=iC2. Since

∫ ∞−
=

t
idtq

then qC1(0-)=qC2(0-). This means that at  t=0-

)(0vC)0(vC -
C22

-
1C1 =

or
)(0v2)0(v -

C2
-

1C =

Solving for the voltages, we get

)(0vV 12)0(v C1
-

1C
+==

)(0vV 6)0(v C2
-

2C
+==

V 18)(0v)0(v -
C2

-
1C =+And we know that
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Equivalent circuit for t ≥  0

E=27V   C2=2C1=2µ F

i1

i2
E

+

-
1H

C1

R2=1kΩ

C2i3

R1=2kΩ

∫∫ ++= dti
C
1

dti
C
1

iR27 3
2

2
1

12(1)

From KVL, we get

(2) ∫+−= dti
C
1

)ii(R0 2
1

121

(3) ∫+−= dti
C
1

)ii(
dt
d

L0 3
2

13
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At t=0+, we get from (1)

mA 9)]0(v)0(v27[
R
1

)0(i 2C1C
2

1 =−−= +++

Since i1(0+) - i3(0+)=iL(0+), then

0)0(i)0(i)0(i L13 =−= +++

∫∫ ++= dti
C
1

dti
C
1

iR27 3
2

2
1

12(1)

(2) ∫+−= dti
C
1

)ii(R0 2
1

121

(3) ∫+−= dti
C
1

)ii(
dt
d

L0 3
2

13
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For resistor R1, we get

)0(v)]0(i)0(i[R)0(v 1C2111R
++++ =−=

or

mA 3
R

)0(v
)0(i)0(i

1

1C
12 =−=

+
++

∫∫ ++= dti
C
1

dti
C
1

iR27 3
2

2
1

12(1)

(2) ∫+−= dti
C
1

)ii(R0 2
1

121

(3) ∫+−= dti
C
1

)ii(
dt
d

L0 3
2

13
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Differentiate equations (1) and (2). We get 

3
2

2
1

1
2 i

C
1

i
C
1

dt
di

R0 ++=(4)

(5) 2
1

1
1

2
1 i

C
1

dt
di

R
dt
di

R0 +−=

At t=0+, we get from (4)

s/A 3−=

)]0(i
C
1

)0(i
C
1

[
R
1

)0(
dt
di

3
2

2
12

1 +++ +−=

∫∫ ++= dti
C
1

dti
C
1

iR27 3
2

2
1

12(1)

(2) ∫+−= dti
C
1

)ii(R0 2
1

121
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At t=0+, we get from (5)

s/A 5.4−=

)0(i
CR
1

)0(
dt
di

)0(
dt
di

2
11

12 +++ −=

At t=0+, we get from (3)

s/A 9−=

)0(v
L
1

)0(
dt
di

)0(
dt
di

2C
13 +++ −=

(3) ∫+−= dti
C
1

)ii(
dt
d

L0 3
2

13

(5) 2
1

1
1

2
1 i

C
1

dt
di

R
dt
di

R0 +−=
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From (6) 

2
2
1

2

kA/sec 9)(0
dt

id =+

Differentiate equations (4) and (5) and evaluate at 
t=0. 

(5)
2

1

1
1

2
1 i

C
1

dt
di

R
dt
di

R0 +−=

3
2

2
1

1
2 i

C
1

i
C
1

dt
di

R0 ++=(4)

dt
di

C
1

dt
di

C
1

dt
id

R0 3

2

2

1
2
1

2

2 ++= (6)

dt
di

C
1

dt
id

R
dt

id
R0 2

1
2
1

2

12
2

2

1 +−= (7)

From (7) 

2
2
2

2

kA/sec 11.25)(0
dt

id =+
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(3) ∫+−= dti
C
1

)ii(
dt
d

L0 3
2

13

Differentiate equation (3) and evaluate at t=0.

3
2

2
1

2

2
3

2

i
C
1

dt
id

L
dt

id
L0 +−=

or 2
2
3

2

kA/sec 9)(0
dt

id =+

Note: This is a third-order network so we 
needed three initial conditions for each mesh 
current, 

iX(0+), )(0
dt
diX + )(0

dt
id
2
X

2
+and
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dt
di

Example: The network has reached steady-state 
condition with the switch closed. At t=0, the switch 
is opened. Find i(0+), v(0+),

(0+) and      (0+).
dt
dv

t=0

i
60V

+

- 1H 10-3F
v

+

-

10Ω20Ω

Equivalent circuit at t=0-

iL(0-)
60V

+

-
+

-

10Ω20Ω

vC(0-)

A 3
20
60

)0(iL ==−

V 60)0(vC =−
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Equivalent circuit for t ≥  0

i1H 10-3F
v

+

-

10Ω20Ω
vi20

dt
di =+(1)

vidt10i10
t3 −=+ ∫ ∞−

(2)

V 30)0(v =+
or

At t=0+, we get

A 3)0(i)0(i L == −+

V 60)0(v)0(v CC == −+

)0(v)0(v)0(i10 C
+++ −=−

From equation (2), we get

+
vC

-
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From (1), we get

A/s 30)0(i20)0(v)0(
dt
di −=−= +++

Differentiate equation (2). We get

dt
dv

i10
dt
di

10 3 −=+

At t=0+, we get

)0(i10)0(
dt
di

10)0(
dt
dv 3 +++ −−= V/s  -2,700=

vi20
dt
di =+(1) vidt10i10

t3 −=+ ∫ ∞−
(2)
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4Ω

60V
+

-

t=0

a

1H

b
120V

+

-
F

4
16Ω

REF

+v1

+v2

Example: The switch has been in position b for a 
long time. At t=0, the switch is moved to a. Find

and       (0+).
dt
dv2

v1(0+), v2(0+),       (0+)
dt
dv1

)0(iA 6)0(i LL
+− ==

)(0vV 36)0(v CC
+− ==

Equivalent circuit at t=0-

iL(0-)
60V

+

-

+

-

6Ω vC(0-)

4Ω
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dt
dv

6
vv

4
v120 2

4
1122 +−=−

(2)

Equivalent circuit for t ≥  0 4Ω

1H
120V

+

-
F

4
16Ω

REF

+v1

+v2

∫=−
dtv

6
vv

1
12(1)

From KCL, we get

0)0(i6)0(v)0(v L21 =−= +++

From (1), we get 

At t=0+, 
V 36)0(v)0(v C2 == ++
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From (2), we get 

V/s 60)0(
dt
dv2 =+

Differentiate equation (1). We get 

1
21 v6

dt
dv

dt
dv −=

At t=0+, 

)0(v6)0(
dt
dv

)0(
dt
dv

1
21 +++ −= V/s 60=

dt
dv

6
vv

4
v120 2

4
1122 +−=−

(2)∫=−
dtv

6
vv

1
12(1)
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The Steady-State Response

The steady-state response is the solution to the 
non-homogenous differential equation. It is similar 
in form to the forcing function g(t) plus all its 
unique derivatives. 

)t(gxa
dt
dx

a...
dt

xd
a

dt
xd

a 011n

1n

1nn

n

n =++++ −

−

−

In practical electric circuits, the driving forces are 
represented by a few mathematical forms, such as 
a constant or a sinusoid. The method of 
undetermined coefficients can be used to evaluate 
the steady-state response.
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Method of Undetermined Coefficients
The method of undetermined coefficients is 
applied by selecting trial functions of all possible 
forms that might satisfy the differential equation.

Format of Forcing 
Function g(t)

Trial Function

K (constant) c (constant)

Ktm cmtm + cm-1tm-1 + … + c1t + c0

Kε α t cε α t

K cos ω t c1 cos ω t  +  c2 sin ω t

K sin ω t
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Method of Undetermined Coefficients

1. Find the form of the transient response by 
solving for the roots of the characteristic 
equation.

2. Write the trial form of the steady-state response 
for each forcing function using the table. If any 
term in the trial function appears in the 
transient response, the trial function should be 
multiplied by t. If the modified trial function still 
has common terms with the transient response,  
another t must be multiplied until no common 
term exists.
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Method of Undetermined Coefficients

1. Differentiate the trial solution as many time as 
needed and substitute into the differential 
equation. By equating coefficients of like terms, 
form a set of algebraic equations in the 
undetermined coefficients.

2. Solve for the undetermined coefficients. These 
coefficients must be in terms of circuit and 
driving force parameters. There are no arbitrary 
constants in the steady-state response.
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The characteristic equation is s2 + 5s + 4 = 0 with 
roots s1 = -4 and s2 = -1. 

Example: Find the steady-state response of the 
second order non-homogeneous differential 
equation

2t sin 24v
dt
dv

5
dt

vd
2

2

=++

vt(t) = K1ε -4t + K2ε -t  
Thus, the transient response is of the form

The steady-state response is of the same form as 
the right hand side of the differential equation. 
From the table, the trial solution for this forcing 
function is

vss(t) = c1 cos 2t  +  c2 sin 2t
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Differentiating vss(t) twice,

dvss(t)/dt = -2c1 sin 2t  +  2c2 cos 2t

vss(t) = c1 cos 2t  +  c2 sin 2t

d2vss(t)/dt2 = -4c1 cos 2t  -  4c2 sin 2t

Our original differential equation is

2t sin 24v
dt
dv

5
dt

vd
2

2

=++

Substituting the trial solution and its derivatives 
into the differential equation, we get

-4c1 cos 2t - 4c2 sin 2t + 5(-2c1 sin 2t + 2c2 cos 2t) 
+ 4(c1 cos 2t + c2 sin 2t) = 2 sin 2t 
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Distributing terms and simplifying,

Comparing the coefficients of the left-hand side of 
the equation to the right hand side, 

We get  c1 = -0.2     and c2 = 0

10c2 cos 2t - 10c1 sin 2t = 2 sin 2t 

Coefficient of cos: 10c2 = 0
Coefficient of sin: -10c1 = 2

vss(t) = -0.2 cos 2t

The steady-state response is
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it(t) = K1ε -t + K2ε -2t  
The transient response is of the form

Example: Consider the second order  
non-homogeneous differential equation

2
2

2

12t2i
dt
di

3
dt

id =++

Find the steady-state response.

The characteristic equation is  s2 + 3s + 2 = 0 with 
roots s1 = -1 and s2 = -2.

From the table, the trial solution for the steady-
state response is

iss(t) = c1t2 + c2t + c3
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Differentiating twice, we get

21
SS ct2c

dt
di += 12

SS
2

2c
dt
id =and

Substituting the trial solution and its derivatives 
into the differential equation, 

2c1 + 3(2c1t + c2) + 2(c1t2 + c2t + c3) = 12t2

or
2c1t2 + (6c1 + 6c2)t + 2c3+ 3c2+ 2c1 = 12t2

Comparing coefficients,
2c1 = 12

6c1 + 6c2 = 0

2c3+ 3c2+ 2c1 = 0
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We get that c1 = 6, c2 = -18 and c3 = 21.

Thus, the steady-state response is

iss(t) = 6t2 -18t + 21

Note: The complete response is

i(t) = it(t) + iss(t)

= K1ε -t + K2ε -2t + 6t2 -18t + 21

The arbitrary constants K1 and K2 can be evaluated

(0)
dt
di

if the initial conditions i(0) and are known.
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xt(t) = K1ε -6t + K2tε -

6t  

The transient response is of the form

Example: Consider the second order  
non-homogeneous differential equation

1836x
dt
dx

12
dt

xd
2

2

=++

Find the steady-state response.

The characteristic equation is
s2 + 12s + 36 = 0

with roots s1 = -6 and s2 = -6. 
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Substituting the trial solution and its derivatives 
into our differential equation we get

36c1 = 18 or c1 = 0.5

Thus, the steady-state response is   xSS = 0.5

From the table, the trial solution for the steady-
state response is

xss(t) = c1 and 0
dt

dx
dt
xd ss
2
ss

2

==

Note: The complete solution is

x(t) = xt(t) + xss(t) = K1ε -6t + K2tε -6t + 0.5

The arbitrary constants K1 and K2 can be evaluated 
if the initial conditions are known.
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it(t) = K1ε -6t + K2tε -6t 
 

The transient response is of the form

Example: Consider the second order 
non-homogeneous differential equation

4t-
2

2

1836i
dt
di

12
dt

id ε=++

Formulate the complete response.

The trial solution for an exponential is

iSS(t) = cε -4t

4t-
2
ss

2

16c
dt

id ε=4t-ss 4c
dt
di ε−=

and
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Substituting into the differential equation,
4t-4t-4t-4t 18)36(c)12(-4c16c ε=ε+ε+ε−

Canceling the exponential terms we get

184c = or       c = 4.5

Thus the steady-state response is
iss(t) = 4.5ε -4t  A

And the complete response is 

i(t) = K1ε -6t + K2tε -6t  + 4.5ε -4t    A

where K1 and K2 can be evaluated using initial 
conditions.
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it(t) = K1ε -6t + K2tε -6t 
 

The transient response is of the form

Example: Consider the second order differential 
equation

4t-
2

2

18ε 1836i
dt
di

12
dt

id +=++

Find the steady-state response.

The right-hand side of the equation is the response 
due to a constant source and an exponentially 
decaying source. From the principle of 
superposition, the trial solution is

iss(t) = K + cε -4t



  
Department of Electrical and Electronics Engineering p97

Differentiating, we get

4t-
2
ss

2

16c
dt

id ε=4t-ss 4c
dt
di ε−= and

Substituting into the differential equation,
4t-4t-4t-4t 1818)cε36(K)12(-4cε16cε ε+=+++−

Which simplifies into
36K + 4cε -4t = 18 + 18ε -4t 

Comparing coefficients, we get
36K = 18       or     K = 0.5

4cε -4t = 18ε -4t   or     c = 
4.5 Thus the steady-state response is

iss(t) = 0.5 + 4.5ε -4t  A
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it(t) = K1ε -6t + K2tε -6t 
 

The transient response is of the form

Example: Consider the second order differential 
equation

6t-
2

2

1836i
dt
di

12
dt

id ε=++

Formulate the steady-state response.

The trial solution of the steady-state response is 

iSS(t) = cε -6t

This will not work as it is of the form as the first 
term of the transient response.
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This is still of the same form as one of the terms of 
the transient response, so we multiply it by again 
by t.

iSS(t) = ct2ε -6t

Multiplying the trial solution by t, we get

iSS(t) = ctε -6t

6t-26t-6t-
2
ss

2

36ct24ct-2c
dt

id ε+εε=

This is now the final form of the trial solution. 
Differentiating twice, we get

6t-26t-ss 6ct2ct
dt
di ε−ε=
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Canceling the exponential terms and simplifying, 
we get

2c = 18          or         c = 9

Thus the steady-state response is

iss(t) = 9t2ε -6t     A

Substituting into the original differential equation,

36ct2ε -6t - 24ctε -6t + 2cε -6t +12(2ctε -6t - 
6ct2ε -6t) + 36ct2ε -6t = 18ε -

6t

And the complete response is 

i(t) = K1ε -6t + K2tε -6t  + 9t2ε -6t    A

where K1 and K2 can be evaluated using initial 
conditions.
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The characteristic equation is s2 +1 = 0 with roots 
s1 = +j and s2 = -j. 

Example: Formulate the complete response of 
the second-order differential equation

t sin i
dt

id
2

2

=+

it(t) = K1 cos t + K2 sin t  
The transient response is of the form

The trial solution for the steady-state response is

iss(t) = c1t cos t  +  c2t sin t

= c1(-t cos t - 2sin t) + c2(-t sin t + 2cos t)

and

2
ss

2

dt
id
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Substituting the trial solution and its derivatives 
into the differential equation, we get

-2 c1 sin t + 2 c2 cos t = sin t 

Comparing coefficients, we get c1=-0.5 and c2= 0.

iss(t) = -0.5t cos t

The steady-state response is

And the complete response is

i(t) = K1 cos t + K2 sin t -0.5t cos t 
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Solving the Differential Equation

Find the steady-state response xss. This is 
similar in form to the forcing function g(t) plus 
all its unique derivatives.

2.

Consider the nth-order differential equation

)t(gxa
dt
dx

a...
dt

xd
a

dt
xd

a 011n

1n

1nn

n

n =++++ −

−

−

Find the transient response xt. This is generally 
an exponential of the form

1.

ts
n

ts
2

ts
1t

n21 εK...εKεKx +++=
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)0(
xt
dx

)0(
dx

xd
1n

1n

−

−

)0(
dt

xd
2

2
Evaluate the initial conditions. We need the3.

values of x(0),           ,            , …               . 

Find the total response. Add the steady-state 
response and transient response.

4.

ts
n

ts
2

ts
1ss

n21 εK...εKεKxx(t) ++++=

Differentiate  the total response (n-1) times.5.

Using the expressions for x(t) and its (n-1) 
derivatives in step 5, and the initial conditions in 
step 3, find the arbitrary constants K1, K2, … Kn.

6.



  
Department of Electrical and Electronics Engineering p105

First, get the differential equations that describe 
currents i1(t) and i2 for t ≥  0. The mesh equations 
are

24i8i12
dt
di

21
1 =−+ (1)

0i8i12
dt
di

2 12
2 =−+ (2)

Example: The network 
is initially unenergized. 
At t=0, the switch is 
closed. Find currents 
i1(t) and i2(t) for t ≥  0.

4Ω

i124V
+

-

t=0 1H

i28Ω 2H

4Ω
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24i8i12
dt
di

21
1 =−+

0i8i12
dt
di

2 12
2 =−+

Using operators we get

(D+12)i1 – 8i2 = 24  (a)

-8i1 + (2D+12)i2 = 0 (b)

To eliminate i2, multiply (a) by (2D+12) and (b) 
by 8 and add the resulting equations. We get

(D2 + 18D + 40)i1 = (D+12)12

14440i
dt
di

18
dt

id
1

1
2
1

2

=++
or

(1)

(2)



  
Department of Electrical and Electronics Engineering p107

(D2 + 18D + 40)i2 = 96

Similarly, we eliminate i1 by multiplying (a) by 8 
and (b) by (D+12) and adding the equations. We 
get

96i40
dt
di

18
dt

id
2

2
2
2

2

=++
or

Alternatively, we can solve for i2 in equation (1) 
and differentiate the resulting equation. We get 

(3)3i
dt
di

i 12
31

8
1

2 −+=

dt
di

dt
id

dt
di 1

2
3

2
1

2

8
12 += (4)

and



  
Department of Electrical and Electronics Engineering p108

Substitute (3) and (4) in equation (2). We get

144i40
dt
di

18
dt

id
1

1
2
1

2

=++

This is the required differential equation for i1.

22
32

4
1

1 i
dt
di

i += (5)

Solve for i1 in equation (2) and differentiate the 
resulting equation. We get

dt
di

dt
id

dt
di 2

2
3

2
2

2

4
11 += (6)and

Substitute (5) and (6) in equation (1). We get

96i40
dt
di

18
dt

id
2

2
2
2

2

=++

This is the required differential equation for i2.
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Next, we find the transient response. 

Solving for the roots, we get s1=-2.6 and s2=-
15.4. 

04018ss2 =++

Setting the right-hand side of the differential 
equations to zero, we get the characteristic 
equation

-15.4t
2

-2.6t
1t1 KKi ε+ε=

Thus, we get the transient response to be of the 
form

-15.4t
4

-2.6t
3t2 KKi ε+ε=
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Next, we determine the steady-state response 
i1,ss and i2,ss which are both constant. The 
differential equation for i1 is

14440i
dt

di
18

dt

id
1ss

1ss
2
ss1

2

=++

From the differential equation for i2

96i40
dt
di

18
dt

id
2

2
2
2

2

=++

Since the 
forcing function 
is a constant 
(24V) the 
steady-state 
response of any 
current or 
voltage should 
also be a 
constant. Thus, 

i1,ss  = A

di1,ss/dt = 0

d2i1,ss/dt2 = 0

A 6.3
40

144
i ss,1 ==

or

A 4.2
40
96

i ss,2 ==
we get
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Alternatively, We can also draw the equivalent 
circuit at steady state. We get 4Ω

24V
+

-
i2,ss8Ω

4Ω

i1,ss

24i8i12 ss,2ss,1 =−

0i12i8 ss,2ss,1 =+−

which gives i1,ss= 3.6 Amps    
      
            and i2,ss= 2.4 Amps.

Next, we find the initial conditions. We need 
i1(0+),

dt
di2i2(0+),      (0+) and      (0+).

dt
di1
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0)0(i)0(i 21 == ++

Since the circuit was initially unenergized, we get

From (1), we get A/s 24)0(
dt
di1 =+

We’ve previously formulated the mesh equations

24i8i12
dt
di

21
1 =−+ (1)

0i8i12
dt
di

2 12
2 =−+ (2)

From (2), we get 0)0(
dt
di2 =+
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Next, formulate the complete response. We get
-15.4t

2
-2.6t

11 KK6.3)t(i ε+ε+=
-15.4t

4
-2.6t

32 KK4.2)t(i ε+ε+=

whose derivatives are

15.4t-
2

2.6t-
1

1 K4.15K6.2
dt
di ε−ε−=

15.4t-
4

2.6t-
3

2 K4.15K6.2
dt
di ε−ε−=
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Evaluate the constants K1 and K2. At t=0+, we get

211 KK6.30)0(i ++==+

21
1 K4.15K6.224)0(

dt
di −−==+

Solving simultaneously, we get K1=-2.46 and 
K2=-1.14. The final expression for current i1 is

A  14.146.26.3)t(i -15.4t-2.6t
1 ε−ε−=

Evaluate the constants K3 and K4. We get K3=-2.89 
and K4=0.49. Thus

A  49.089.24.2)t(i -15.4t-2.6t
2 ε+ε−=
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I1

I2

Plot of the Currents  

4

i124
+

-

t=0 1

i28 2

4
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4Ω

60V
+

-

t=0

a

1H

b
120V

+

-
F

4
16Ω

REF

+v1

+v2

Example: The switch has been in position b for a 
long time. At t=0, the switch is moved to a. Find 
v1(t) and v2(t) for t ≥  0.

In a previous example, we got the differential 
equations that describe the voltages v1 and v2. In 
another example, we derived the initial conditions.
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0v10
dt
dv

7
dt

vd
1

1
2
1

2

=++

720v10
dt
dv

7
dt

vd
2

2
2
2

2

=++

The differential equations are

0)0(v1 =+

V 36)0(v2 =+

V/s 60)0(
dt
dv

)0(
dt
dv 21 == ++

with initial conditions

(1)

(2)
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whose roots are s1=-2 and s2=-5. We get
-5t

2
-2t

1t1 KKv ε+ε=
-5t

4
-2t

3t2 KKv ε+ε=

Transient response: The characteristic equation 
is 010s7s2 =++

Steady-state response:
We can draw the equivalent circuit at steady state.

v2,ss
v1,ss

120V
+

-

+

-

6Ω

4Ω

+

-

0v ss,1 =

V 72)120(
10
6

v ss,2 ==
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0v10
dt
dv

7
dt

vd
1

1
2
1

2

=++

720v10
dt
dv

7
dt

vd
2

2
2
2

2

=++

Alternatively, from the differential equations

(1)

(2)

V 72
10
720

v ss2, ==

v1,ss  = A

dv1,ss

 dt
= 
0

d2v1,ss

 dt2
= 0

v2,ss  = B

dv2,ss

 dt
= 
0

d2v1,ss

 dt2
= 0

0v ss,1 =

We get
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Complete response: We get
-5t

2
-2t

11 KK)t(v ε+ε=
-5t

4
-2t

32 KK72)t(v ε+ε+=
The derivatives are

5t-
2

2t-
1

1 K5K2
dt
dv ε−ε−=

5t-
4

2t-
3

2 K5K2
dt
dv ε−ε−=

At t=0+, we get

211 KK0)0(v +==+
21

1 K5K260)0(
dt
dv −−==+
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Also at t=0+, we get

432 KK7236)(0v ++==+

43
2 5K2K60)(0

dt
dv −−==+

Solving simultaneously, we get K3=140 and 
K4=-68. The final expressions are

0t   V   2020)t(v -5t-2t
1 ≥ε−ε=

0t   V   4ε40ε72(t)v -5t-2t
2 ≥+−=

Solving simultaneously, we get K1=20 and K2=-20.
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V1

V2

Plot of the Voltages  

4

60V
+

-

t=0

1
120

+

-
F

4
16

REF

+v1

+v2
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Example: The network 
is initially unenergized. 
At t=0, the switch is 
closed. Find current  
i2(t) for t ≥  0. Assume 
v(t)=20 cos 4t volts.

8Ω

i1v(t)
+

-

t=0 2H

i24Ω 1H

For t ≥  0, the mesh equations are

)t(vi4i12
dt
di

2 21
1 =−+ (1)

0i4i4
dt
di

12
2 =−+ (2)
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2
2

4
1

1 i
dt
di

i += (3)

Solve for i1 in equation (2) and differentiate the 
resulting equation. We get

dt
di

dt
id

dt
di 2

2
2

2

4
11 += (4)

and

Substitute (3) and (4) in equation (1). We get

)t(v2i16
dt
di

10
dt

id
2

2
2
2

2

=++

where v(t)=20 cos 4t volts.

(5)
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4tcos4016i
dt

di
10

dt

id
2

2
2
2

2

=++ (5)

Transient response: The characteristic equation is
016s10s2 =++

The roots are s1=-2 and s2=-8. Thus
t8

2
t2

1t,2 KKi −− ε+ε=
Forced Response: Since the source is sinusoidal,

4t sin B4t cos Ai ss,2 +=

4t cos B44t sin A4
dt

di ss,2 +−=

4t sin 16B-4t cos A16
dt

id
2
ss,2

2

−=
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Substitute in the differential equation (5). We get

4tsin40A-4t sin 16B-4t cos16A −
4t cos 404t sin 16B4t cos16A 4tcos40B =+++

4tcos4016i
dt

di
10

dt

id
2

2
2
2

2

=++ (5)

A16B40A1640 ++−=

B16A40B160 +−−=

Simplifying and comparing coefficients, we get

Solving simultaneously, we get A=0 and B=1. Thus

t4 sini ss,2 =
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Initial Conditions: 8Ω

i1v(t)
+

-

t=0 2H

i24Ω 1H
The circuit is initially 
unenergized so

i1(0+) = i2(0+) = 0

For t ≥  0, we’ve formulated the mesh equations as

4t cos 204i12i
dt
di

2 21
1 =−+ (1)

0i4i4
dt
di

12
2 =−+ (2)

From (2), we get 0)(0
dt
di2 =+
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Complete response:
t8

2
t2

12 KK4t sin)t(i −− ε+ε+=

t8
2

t2
1

2 K8K2-4t cos 4
dt
di −− ε−ε=

Solving simultaneously, we get K1=-K2=-2/3. Thus

0t  A  -4t sin)t(i t8
3
2t2

3
2

2 ≥ε+ε= −−

21 KK0 +=

21 K8K2-40 −=

Evaluating these equations at t=0 and substituting 
initial conditions,
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Plot of the Current & Voltage  

i2

V(t) = 20 cos (4t)
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iL
Example: Find the 
complete response 
vc(t) if vc(0) = 1V and 
iL(0) = -62.5 mA.

10Ω

vs(t)
+

-

2H

+
vc

-
8Ω F

4
1

vs(t) = t2+3t+1

From KCL, we get 0iv
8
1

dt
dv

8
1

Lc
c =−+ (1)

From KVL, we get

13ttv10i
dt
di

2 2
CL

L ++=++ (2)

We can write iL in terms of vC in equation (1)

c
c

L v
8
1

dt
dv

8
1

i +=
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Differentiating the equation for iL

dt
dv

8
1

dt
vd

8
1

dt
di c

2
c

2
L +=

Substituting iL and its derivative in (2) and 
simplifying, we get the differential equation for vc

412t4t9v
dt
dv

6
dt

vd 2
c

c
2
c

2

++=++

Transient response: The characteristic equation 
for this circuit is s2 + 6s + 9 = 0 with repeated 
roots s1 = s2 = -3.
This is the critically damped case and the  transient 
response is of the form

vc,t(t) = (K1 + K2t)ε -3t
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From the table, the forced response is of the form
vc,ss(t) = c1t2 + c2t + c3

Differentiating vc,ss(t) twice,

= 2c1t + c2dt
dv ssc,

= 2c12
ssc,

2

dt

vd
and

Next, we substitute the trial solution vc,ss(t) and 
its derivatives into the differential equation.

Steady-state response: The differential 
equation for vc is

412t4t9v
dt
dv

6
dt

vd 2
c

c
2
c

2

++=++ (3)
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9c1t2 + (12c1+ 9c2)t + 2c1+ 6c2+9c3 = 4t2+12t+4 
We get

Comparing coefficients,
9c1

 = 4 

12c1+ 9c2 = 12 

2c1+ 6c2+9c3 = 4 

c1
 = 0.4444

c2
 = 0.7407

c3
 = -0.5926

Initial conditions: We are given that vc(0) = 1V 
and iL(0) = -62.5 mA. To find dvc(0)/dt, evaluate 
equation (1) at t=0.

1.5V/sec(0)v
8
1

(0)i8(0)
dt
dv

cL
c −=



 −=
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Evaluating the complete response at t=0 and 
substituting  initial conditions

vc(0) = 1 = – 0.5926 + K1

= -1.5 = 0.7407-3K1 + K2
(0)

dt
dvc

Finally, we have the complete solution

vc(t) =0.4444t2 + 0.7407t – 0.5926 

+ (1.5926 + 2.5371 t)ε -3t

Complete response:

vc(t) =0.4444t2 + 0.7407t – 0.5926 + (K1 + K2t)ε -3t

= 0.8888t + 0.7407 + (-3K1 + K2 -3K2t)ε -3t

dt
dvc

K1 = 1.5926

K2 = 2.5371
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Numerical Methods
Solving differential equations is a fundamental 
problem in science and engineering. Sometimes, 
we can find closed-form solutions using calculus. 
In general, however, there is no analytic solution 
and the differential equation have to be solved 
numerically.

Two methods for numerically approximating the 
solution to ODEs are

 Euler Method

 Runge-Kutta Method
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t0, y0

t1, y1

t2, y2
t3, y3

∆t ∆t ∆t

y

t

Comparison of Analytical and 
Numerical Solutions of ODEs

Analytic solution method Numerical solution method 

 Solve the ODE to find a 
family of solutions.
 Choose the solution satisfying 
the correct initial conditions.
 Find an analytic formula for 
y(t)

 Start with the initial conditions
 Solve one small time step at a 
time
 Solve approximately at each 
time step
 Find pairs of points (t0,y0), 
(t1,y1), …

y(0)=b

t

y
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Euler Method
Consider the first-order differential equation

t)f(x, = 
dt
dx

with initial condition x(t0) = X0. Integration gives

∫ ∞
=

t

-
dt )t,x(f)t(x

∫ ∫∞
+= 0

0

t

-

t

t
dt )t,x(fdt )t,x(f

∫+=
t

t0
0

dt )t,x(fX)t(x
or
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Note: This simple method of numerical integration 
is referred to as the Euler method. Unfortunately, 
even with a small step size ∆ t, the method is not 
very accurate.

If the interval from t0 to t is made very small, then

where ∆ t = t – t0. Thus, we get

t)t,x(f)t(x)tt(x
0t00 ∆•+≈∆+

)t()t,x(fdt)t,x(f t
tt

t ∆≈∫
∆+

0

0

0
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10
Ω

0.1Hv(t)
+

-

t=0

i

Example: In the circuit shown, the switch is closed 
at t=0. The source is described by v(t) = 20t volts. 
Find i for t ≥  0 using the Euler method. Use a step 
size ∆ t=0.001 sec. 

For t ≥  0, we get from 
KVL

t20i10
dt
di

1.0 =+

with initial condition i(0+)=0.

)t,i(fi100t200
dt
di =−=or

First-Order Differential Equation
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0)001.0)](0(100)0(200[0 =−+=

Applying the Euler method successively, we get

)t()t,i(f)0(i)001.0(i
0t

∆+= +=
+

)t()t,i(f)001.0(i)002.0(i
001.0t

∆+=
=

)001.0)](0(100)001.0(200[0 −+=

0002.0=

)t()t,i(f)002.0(i)003.0(i
002.0t

∆+=
=

00058.0=

)001](.02.0)002(.200[0002. −+=
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)t()t,i(f)003.0(i)004.0(i
003.0t

∆+=
=

00181.0=

)001](.058.0)003(.200[00058. −+=

Continue!

Exact solution: The transient response is

100t-t
L
R

t KKi ε=ε=
−

The steady-state response: Let iss=K1t+K2

1
ss K

dt
di =
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t20)KtK(10K1.0 211 =++

Substitution gives

Comparing coefficients, we get

20K10 1 = 0K10K1.0 21 =+and

or K1=2 and K2=-0.02. The steady-state response 
is 0t   A   02.0t2iss ≥−=

Since i(0+)=0, we get

0t   A   02.002.0t2)t(i -100t ≥ε+−=
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Comparison of Results:

Time Exact Euler Error 

0 0 0 0 

0.001 0.0000968 0 0.0000968 

0.002 0.0003746 0.0002 0.0001746 

0.003 0.0008164 0.00058 0.0002364 

0.004 0.0014064 0.001122 0.0002844 

0.005 0.0021306 0.0018098 0.0003208 
 

 

Note: For better accuracy, use a smaller step size 
∆ t. Better yet, use a more accurate method.
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Solution of the State Equation 
The Euler method for integrating a first-order 
differential equation is of the form

t)t,x(f)t(x)tt(x
0t00 ∆•+≈∆+

where x=f(x,t). The method can be extended to 
the case when x is a vector. 

.

Substitution gives

t)]t(uB)t(xA[)t(x)tt(x 0000 ∆++≈∆+
)t(u tB)t(x )tAI( 00 ∆+∆+≈

uBxA)t,x(fx +==
•

Consider the state
equation

Identity matrix Step-size
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 Example: The network is initially unenergized. At 
t=0, the switch is closed. t=0 8Ω

iL1v(t)
+

-

2H

iL24Ω 1H

Use the Euler method 
with ∆ t=0.02 sec to 
find iL1 and iL2 for t ≥ 0. 
Let v(t)=20 cos 4t V.

For t ≥  0, we get from KVL,

)t(vi4i12
dt
di

2 21
1 =−+

0i4i4
dt
di

12
2 =−+
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In matrix form, we get

2L

1L

i
i

•

•

2L

1L

i

i
v(t)= +

0
5.0

44
26

−
−

with initial conditions iL1(0+) = iL2(0+) = 0.

Recall the Euler method

)t(u tB)t(x )tAI()tt(x 000 ∆+∆+≈∆+

= +
44

26
−

−
0.02I+∆ tA

10
01

=
92.008.0
04.088.0
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We get

= +
iL1(t+∆ t)

iL2(t+∆ t) 92.008.0
04.088.0 iL1(t)

iL2(t)

0.2cos 4t

0

At t=0,

= +
iL1(0.02)

iL2(0.02) 92.008.0
04.088.0 iL1(0+)

iL2(0+)

0.2

0 0

0.2
=

where

)t(u tB)t(x )tAI()tt(x 000 ∆+∆+≈∆+

=I+∆ tA
92.008.0
04.088.0

and   ∆ t=0.2
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At t=0.04 second:

= +
iL1(0.04)

iL2(0.04) 92.008.0
04.088.0 0.3754

0.016 0.0448

0.5284
=

0.1974

0

= +
iL1(t+∆ t)

iL2(t+∆ t) 92.008.0
04.088.0 iL1(t)

iL2(t)
0.2cos 4t

0

and

We’ve found

=
iL1(0+)

iL2(0+) 0

0
=

iL1(0.02)

iL2(0.02) 0

0.2

At t=0.02 second:

= +
iL1(0.04)

iL2(0.04) 92.008.0
04.088.0 0.2

0 0.016

0.3754
=

0.1994

0
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Comparison of Results
From a previous example, we got

0t  A  -4t sin)t(i t8
3
2t2

3
2

2 ≥ε+ε= −−

Time Actual Euler Error

0.02 0.00748 0.0 0.00748

0.04 0.02801 0.016 0.01201

0.06 0.05894 0.04475 0.01419

0.08 0.09800 0.08344 0.01456

Comparing the actual value with the estimate,
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Plot of the Current  
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Runge-Kutta Method
Euler’s method is rarely used in practice because 
truncation error per step size is relatively large. A 
more popular method is the fourth-order Runge-
Kutta method.

)y,f(xΔtk nn1 •=
)kyΔt,f(xΔtk 12

1
n2

1
n2 ++•=

)kyt,f(xΔtk 3nn4 +∆+•=

)kyΔt,f(xΔtk 22
1

n2
1

n3 ++•=

46
1

33
1

23
1

16
1

n1n kkkkyy ++++=+

and
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