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Differential Equations
Definition: Differential equations are equations 
that involve dependent variables and their 
derivatives with respect to the independent 
variables. 
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Ordinary Differential 
Equations

Definition: Ordinary differential equations 
(ODE) are differential equations that involve only 
ONE independent variable. 
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u(x) is the dependent variable

x is the independent variable

Example:
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Ordinary Differential 
Equations

We can classify all ODEs according to
order, linearity and homogeneity.

The order of a differential equation is just the 
highest differential term involved:

2nd order
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Linearity
The important issue is how the unknown variable 
(ie  y) appears in the equation. A linear equation 
must have constant coefficients, or coefficients 
which depend on the independent variable. If 
y or its derivatives appear in the coefficient the 
equation is non-linear.

is linear0=+ y
dt

dy

02 =+ y
dt

dy is non-linear
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y is non-linear
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Linearity - Summary
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Homogeniety
Put all the terms of the differential equation which 
involve the dependent variable on the left hand 
side (LHS) of the equation.

Homogeneous: If there is nothing left on the 
right-hand side (RHS), the equation is 
homogeneous.  (unforced or free)

Nonhomogeneous: If there are terms left on 
the RHS involving constants or the independent 
variable, the equation is nonhomogeneous (forced)
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Examples of Classification

0=+ y
dx

dy
 1st Order

 Linear
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Linear Differential Equations
A linear ordinary differential equation describing 
linear electric circuits is of the form
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where

an, an-1,…,a0 constants

x(t) dependent variable (current or voltage)

t independent variable

v(t) voltage or current sources
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Linear Differential Equations

Assume that we are given a network of passive 
elements and sources where all currents and 
voltages are initially known. At a reference instant 
of time designated t=0, the system is altered in a 
manner that is represented by the opening or 
closing of a switch.

Our objective is to obtain equations for currents 
and voltages in terms of time measured from the 
instant equilibrium was altered by the switching.
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Solution to Differential Equations

In the network shown, the 
switch is moved from position 
1 to position 2 at time t=0.

L

R

E
+

-

1

2

0Ri
dt
di

L =+

After switching, the KVL equation is

(1)

dt
L
R

i
di −=

Re-arranging the equation to separate the 
variables, we get

(2)
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Solution to Differential Equations

The constant K can be expressed as     ln k

where ln means the natural logarithm (base e).

Kt
L
R

i +−=ln

Equation 2 can be integrated to give

(3)

Thus, equation 3 can be written as

kei L/Rt lnlnln += − (4)

We know that     ln y + ln z = ln yz
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Solution to Differential Equations

Equation 6 is known as the general solution. If 
the constant k is evaluated, the solution is a 
particular solution.

Equation 4 is equivalent to

)ke(i L/Rt−= lnln (5)

Applying the antilogarithm we get

(6)L/Rtkei −=
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General and Particular Solutions

The general solution refers to a set of solutions 
satisfying the differential equation.

A particular 
solution fits the 
specification of a 
particular problem.

Assume in the 
previous circuit, 
R=1kΩ , L=4H.

1.5e-250t

  e-250t

0.5e-250t
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First-Order Transients
Consider the homogeneous differential equation

0bx
dt
dx

a =+

with initial condition x(0)=X0. 

where K and s are constants.

stKx ε=

The solution can be shown to be an exponential of 
the form

0bKasK stst =ε+ε

Substitution gives
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After canceling the exponential term, we get

0bas =+ or
a
b

s −=

Thus the solution is
t

a
b

Kx
−

ε=

The constant K can be found using the given initial 
condition. At t=0, we get

KKX)0(x 0
0 =ε==

The final solution is

0t    Xx
t

a
b

0 ≥ε=
−
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Source-Free RL Network

Consider the circuit shown. Let 
i(0) = I0. From KVL, we get 

0Ri
dt
di

L =+
L

i

R

The solution can be found to be

t
L
R

Ki
−

ε=
At t=0, we get

KKI)0(i 0
0 =ε==
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Note: Every current and voltage in an RL 
network is a decaying exponential with a 

time constant of τ =L/R.

Substitution gives
t

L
R

0I)t(i
−

ε=

From Ohm’s Law, we get the resistor voltage.
t

L
R

0R RIRiv
−

ε==
The voltage across the inductor is given by

R

t
L
R

0L vRI
dt
di

Lv −=ε−==
−
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Source-Free RC Network
Consider the circuit shown. Let 
vC(0) = V0. From KCL, we get 
for t ≥  0

0v
R
1

dt
dv

C C
C =+

i

R

vC

+

-
C

The solution can be shown to be

t
RC
1

C Kv
−

ε=
At t=0, we get

KKV)0(v 0
0C =ε==
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Substitution gives
t

RC
1

0C V)t(v
−

ε=

R

t
RC
1

0C
C i

R
V

dt
dv

Ci −=ε−==
−

The current in the capacitor is is given by

From Ohm’s Law, we get the resistor current.

t
RC
1

0C
R R

V
R
v

i
−

ε==

Note: Every current and voltage in an RC 
network is a decaying exponential with a 

time constant of τ =RC.
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The Exponential Function
t

1

0X)t(x τ
−

ε=Given the function

When t=0, 0
0

0 XX)0(x =ε=

When t=τ , 0
1

0 X368.0X)(x =ε=τ −

When t=2τ , 0
2

0 X135.0X)2(x =ε=τ −

When t=3τ , 0
3

0 X050.0X)3(x =ε=τ −

When t=4τ , 0
4

0 X018.0X)4(x =ε=τ −

When t=5τ , 0
5

0 X007.0X)5(x =ε=τ −
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Plot of the Exponential Function
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t

1
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Note: As seen from the plot, after t=5τ , or after 5 
time constants, the function is practically zero. 
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Comments:

1.  When R is expressed in ohms, L in Henrys 
and C in Farads, the time constant is in 
seconds.

Note: For practical circuits, the exponential 
function will decay to zero in less than 1 second.

2.  For practical circuits, the typical values of 
the parameters are: R in ohms, L in mH, 
C in µ F.

sec  in    RC

msec  in     
R
L

µ=τ

 = τ3.  Typically,
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A More General RL Circuit

The circuit shown has several resistors but only one 
inductor. Given
i1(0+)=I0=2 Amps, 
find i1, i2, and i3 for 
t ≥  0.

I0i1
6Ω

i3i2
3Ω 2Ω

4Ω 0.1H

First, determine the 
equivalent resistance 
seen by the inductor.

6Ω 3Ω 2Ω

4Ω a b

36
)3(6

42Rab +
++=

Ω=  8
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Next, find the time constant of the circuit.

sec  
80
1

R
L

ab

==τ

Every current will be described by the exponential

0t     K t80 ≥ε−

For example, we get

0t     εKi 80t
11 ≥= −

At t=0+, i1(0+)=I0=2 Amps. Thus, we get

1
0

11 KK2)0(i =ε==+
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Thus, we find the current i1 to be

0t    Amps   2i t80
1 ≥ε= −

The remaining currents, i2 and i3, can be found 
using current division. We get

112 i
3
1

i
63

3
i =

+
=

0t    Amps   
3
2

i t80
2 ≥ε= −

or

Similarly, we get

0t    Amps   
3
4

i t80
3 ≥ε= −
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A More General RC Circuit

The circuit shown has several resistors but only one 
capacitor. Given
vC(0+)=V0=20 volts, 
find i for t ≥  0. i6kΩ 2KΩ 3kΩ

vC

+

-
1µ F

k3k6
)k3(k6

k2Rab +
+=

Ω= k 4

First, determine the 
equivalent resistance 
seen by the capacitor.

6kΩ
2KΩ

3kΩa
b
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Next, find the time constant of the circuit.

msec  4)F1)(k4(CRab =µΩ==τ

Any current or voltage will be described by the 
exponential

0t     K t250 ≥ε−

For example, we get

0t     Kv t250
C ≥ε= −

At t=0+, vC(0+)=V0=20 volts. Thus, we get

KK20)0(v 0
C =ε==+
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Thus, we find the Voltage vC to be

0t    volts   20v t250
C ≥ε= −

Applying current division, we get the current i(t).

0t    mA   e 3.33)-i(
k3k6

k6
)t(i t 250 -

C ≥=
+

=

The current in the capacitor is described by

0t    mA   5
dt

dv
Ci t250C

C ≥ε−== −
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RL Network with Constant Source
In the circuit shown, the 
switch is closed at t = 0. 
Find current i(t) for t ≥  0.

R

L
i

E
+

-

t=0

For t ≥  0, we get from 
KVL 

ERi
dt
di

L =+

The solution of a non-homogeneous differential 
equation consists of two components:

1.  The transient response

2.  The steady-state response
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Transient Response: The solution of the homo-
geneous differential equation; that is  

0Ri
dt
di

L t
t =+

The transient response for the RL circuit is 
t

L
R

t Ki
−

ε=
Steady-State Response: The solution of the 
differential equation itself; that is  

ERi
dt
di

L ss
ss =+



Department of Electrical and Electronics Engineering EEE 33 - p33

0
dt
diss =

The steady-state response is similar in form to the 
forcing function plus all its unique derivatives. For 
constant excitation, the steady-state response is 
also constant.

Let iss=A, constant

Substitute in the differential equation

ERA0 =+
or

R
E

A =
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Complete Response: The sum of the transient 
response and steady-state response.

0t    K
R
E

ii)t(i
t

L
R

tss ≥ε+=+=
−

Initial Condition: For t<0, i=0 since the switch is 
open. At t=0+, or immediately after the switch is 
closed, i(0+)=0 since the current in the inductor 
cannot change instantaneously.

Evaluate K. At t=0+, we get

0K
R
E

0)0(i ε+==+

R
E

K −=or
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0t    
R
E

R
E

)t(i
t

L
R

≥ε−=
−

Finally,we get

A plot of the current for t ≥  0 is shown below.
iss
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.
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Transient Response
The transient response is the solution of the 
homogeneous differential equation.  

(1) It is an exponential function whose time 
constant depends on the values of the electrical 
parameters (R, L and C);

(2) It is also called the natural response since it is 
a “trademark” of any network; 

(3) It is independent of the source; and

(4) It serves as the transition from the initial 
steady-state to the final steady-state value.
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Steady-State Response
The steady-state response is the solution of the 
original differential equation.  

(3) It is independent of the initial conditions; and

(4) It exists for as long as the source is applied.

(1) It is also called the forced response since its 
form is forced on the electrical network by the 
applied source;

(2) It is similar in form to the applied source plus 
all its unique derivatives;

The forced response is the response that will be left 
after the natural response dies out.
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RC Network with Constant Source
In the circuit shown, the 
switch is closed at t = 0. 
Assume vC(0)=V0. Find 
vC(t) for t ≥  0.

R

i
E

+

-

t=0

vC

+

-
C

For t ≥  0, we get from KVL 

EvRi C =+

Since                 , we get

Ev
dt

dv
RC C

C =+

dt
dv

Ci C=
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Transient Response: For an RC network, we get
t

RC
1

t,C Kv
−

ε=
Steady-State Response: Since the forcing 
function is constant, the steady-state response is 
also constant.

Let vC,ss = A, constant

0
dt

dv ss,C =

Ev
dt

dv
RC ss,C

ss,C =+

Substitute in
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We get
orEA0 =+ EA =

Complete Response: Add the transient response 
and steady-state response.

t
RC
1

t,Css,CC KEvvv
−

ε+=+=

Evaluate K. At t=0+, we get

KEV)0(v 0C +==+ or EVK 0 −=

Finally,we get

0t     )EV(E)t(v
t

RC
1

0C ≥ε−+=
−
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L and C at Steady State
With all sources constant, then at steady-state, 
all currents and voltages are constant. 

LI0

+ -vL

iC

V0+ -

C

0
dt
dI

Lv 0
L ==

If the current is 
constant, then

0
dt
dV

Ci 0
C ==

If the voltage is 
constant, then

Note: With constant sources, L is short-circuited 
and C is open-circuited at steady state condition.
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Example: Find the 
current and voltages 
at steady state.

10
Ω

Li24V
+

-

vR+ -

vL

+

-

Since the source is constant, 
the inductor is shorted at 
steady state.

10
Ω

iss24V
+

-

vR,ss+ -

vL,ss

+

-

A 4.2
10
24

iss ==

V 24v ss,R =

0v ss,L =
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Example: Find the 
current and voltages 
at steady state.

10
Ω

Ci24V
+

-

vR+ -

vC

+

-

Since the source is constant, 
the capacitor is open-circuited 
at steady state.

10
Ω

iss24V
+

-

vR,ss+ -

vC,ss

+

-

0iss =

0v ss,R =

V 24v ss,C =
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Example: Find the 
inductor current and 
capacitor voltage at 
steady state.

3Ω

C
iL

24V
+

-
vC

+

-

L

9Ω

At steady state, short 
the inductor and open 
the capacitor.

iL,ss

3Ω

24V
+

-
vC,ss

+

- 9Ω

A 2
12
24

i ss,L ==

V 18i9v ss,Lss,C ==
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Example: Find the 
inductor currents 
and capacitor 
voltages at

4Ω

iL2

24V
+

-
vC1

+

-
C3

iL1

vC3

+

-

8Ω

vC2
+

-steady state.

Equivalent circuit at steady-state

4Ω

IL2

24V
+

-
VC1

+

-
C3

IL1

VC3

+

-

8Ω

VC2

+

-

0I 1L =
A 2I 2L =

V 16V 3C =
0V 2C =

V 16V 1C =
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Example: The switch is 
closed at t=0. Find the 
current i(t) for t ≥  0. 

4Ω

10mH12V
i+

-

t=0

The transient current is

0t     KKi t400t
L
R

t ≥ε=ε= −−

The steady-state equivalent circuit for t ≥  0

4Ω

Iss
12V

+

-

A 3
4

12
Iss ==
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The complete solution

0t     K3ii)t(i t400
tss ≥ε+=+= −

Initial condition:  At t=0+, i(0+)=0 since the 
inductor current cannot change instantaneously.  

Evaluate K: At t = 0+, 

0K30)0(i ε+==+

Thus, we get

0t    A  33)t(i t400 ≥ε−= −

3K −=
or
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RL and RC Networks

With constant sources, L is short-circuited and C 
is open-circuited at steady state condition.

The solution of a non-homogeneous differential 
equation consists of two components: the transient 
response and the steady-state response

 
t

L

R

KA)t(i
−

ε+=

RL Network with 
Constant Source

t
RC

1

KA)t(v
−

ε+=

RC Network with 
Constant Source

transient 
response

steady-state 
response

transient 
response

steady-state 
response
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Example: The switch has been in position 1 for a 
long time. At t=0, the switch is moved to position 
2. Find the current i(t) for t ≥  0. 

5k
Ω

1µ
F

i12V
+

- vC

+

-

6V
+

-

10kΩ

t=0

1 2

The circuit is at steady-state 
condition prior to switching. 

5k
Ω

12V
+

-
vC,ss

+

-)(0vV 12v -
Css,C ==
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Equivalent circuit for t ≥  0

1µ
F

i E=6V
+

-

10kΩ
From KVL, we get

Eidt
C
1

Ri
t

=+ ∫ ∞−

At t=0+,
E)0(v)0(Ri C =+ ++

or

R
)0(vE

)0(i C
+

+ −=

Since the capacitor voltage cannot change 
instantaneously,

V 12)(0v)0(v -
CC ==+
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We get

mA 6.0
k10
126

)0(i −=−=+

The transient response is

0t     KKi t100t
RC
1

t ≥ε=ε= −−

The steady-state current is zero since the capacitor 
will be open-circuited. Thus, the total current is 
equal to the transient current. Since i(0+)=-0.6 mA, 
we get

0t     mA  6.0)t(i t100 ≥ε−= −

VC(0+)
=12V

i 6V
+

-

10k
Ω

1uF
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Comments: 

1. The actual current flows in the clockwise 
direction. The capacitor supplies the current. 
The 6-volt source is absorbing power.

2. The voltages across the resistor and capacitor 
can be found to be

0t     V  6)t(Riv t100
R ≥ε−== −

0t     V  66v6v t100
RC ≥ε+=−= −

6V
+
VC

-

i +

-

10kΩ

1uF

- VR +
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Comments: 

3. The energy stored in the capacitor decreases 
from 72 µ J to 18 µ J. 

J72)12)(F1()0(Cv)0(W 2
2
12

C2
1

C µ=µ== ++

J18)6)(F1()(Cv)(W 2
2
12

C2
1

C µ=µ=∞=∞

The resistor will dissipate a total energy of 18 µ J. 

J µ=ε
Ω

== ∫∫
∞ −∞

18dt
k10

36
dt

R

v
W

0

t200

0

2

R

The 6V source will absorb a total energy of 36 µ J.

J µ=ε−== ∫∫
∞ −∞

36dt)mA6.0(6dtViW
0

t100

0R
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Example: The network has reached steady-state 
condition with the switch in position 1. At t=0, the 
switch is moved to position 2. Find i, vc1 and vC2  for 
t ≥  0. Assume that capacitor C2 is initially 
uncharged. 10kΩ

5µ
F

i100V
+

- vC1

+

-

2.5kΩ

t=0

1 2

20µ
F

vC2

+

-

The circuit is at steady-state 
prior to switching. 

10kΩ

100V
+

-
vC1,ss

+

-V 100v ss,1C =
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Equivalent circuit at t=0+
2.5kΩ

i(0+)
vC2(0+)

+

-

+

-
C1

vC1(0+) C2

From KVL, we get

)0(v)0(Ri)0(v 2C1C
+++ +=

V 100)0(v 1C =+

0)0(v 2C =+

Substitution gives i(0+) = 40 mA.

Equivalent circuit for t ≥  0

+

--

+

2.5kΩ

i5µ
F

20µ
F

F 4Ceq µ=

ms 10RCeq ==τ
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The current for a source-free RC circuit is given by

0t     KK)t(i t100t
RC
1

≥ε=ε= −−

Since i(0+) = 40 mA, we get

0t    mA   40)t(i t100 ≥ε= −

The voltages are

0t    V   100)t(Riv t100
R ≥ε== −

∫∫ +
+== +

∞−

t

0
2

2C

t

2
2C idt

C
1

)0(vidt
C
1

v

0t    V   2020 t100 ≥ε−= −
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2CR1C vvv +=

0t    V   8020 t100 ≥ε+= −

Comments:

1. The current decays to zero but vC1 And vC2 do  
not decay to zero. At steady-state (t=∞),

V 20VV ss,2Css,1C ==
2. The initial energy stored in C1 and C2

mJ 25)0(vC)0(W 2
1C12

1
1C == ++

0)0(vC)0(W 2
2C22

1
2C == ++
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3. The final energy stored in C1 and C2

mJ 1)(vC)(W 2
1C12

1
1C =∞=∞

mJ 4)(vC)(W 2
2C22

1
2C =∞=∞

4. The total energy lost is 20 mJ.

5. The total energy dissipated by the resistor 

mJ 20dt4RdtiW
0

t200

0

2
R =ε== ∫∫

∞ −∞

Note: At t=0+, vC1=100 volts and vC2=0. Capacitor 
C1 supplies the current that charges capacitor C2. 
The current stops when vC1 = vC2 =20 V.
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The circuit is at steady-
state prior to switching. 

36V

1k
Ω
IL,ss

+

-

2kΩ

12V
+

-

mA 30=
k2

36
k1

12
I ss,L +=

Example: The network has reached steady-state 
condition with the switch closed. At t=0, the switch 
is opened. Find i(t) 1k

Ω

i12V
+

-
36V

+

-

2kΩt=0

0.1H

for t ≥  0. 
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Equivalent circuit for t ≥  0 1k
Ω

i12V
+

-
0.1H

The transient current is

t000,10t
L

R

t KKi −−
ε=ε=

At steady-state, the inductor is short-circuited. 
Thus, the steady state current is 12 mA.
The complete response is

0tmA      ≥ε+= − t000,10K12)t(i

Since i(0+) = 30 mA, we get K = 18 mA. The final 
expression is

0tmA      ≥ε+= − t000,101812)t(i
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First-Order RL and RC Circuits
General Procedure

1. The solution is:

        f(t) = f(∞) + [f(0+) - f(∞)] e-t/τ

1. Find f(0+), the initial value of the variable to 
be solved.

2. Find f(∞), the final value of the variable to be 
solved.

1. Simplify the RC or RL circuit to get Req, Ceq or Leq. 

 The time constant τ  is ReqCeq or Leq/Req.

Note:  When solving for the initial and final values, treat the 
capacitors as open circuits & the inductors as short circuits.
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3. If a switch changed state (closes or opens) at 
     t = t0, then 

vC(t0
+)  =  vC(t0

-) 

“The voltage across a 
capacitor cannot change 

instantaneously.”

iL(t0
+)  =  iL(t0

-)

“The current through an 
inductor cannot change 

instantaneously.”

NOTES:
 1. f(t) = f(∞) + [f(0+) - f(∞)] e-t/τ

forced response   natural response

 All other voltages and currents can change instantaneously.

2. Req is the thevenin resistance seen by the

   capacitor or inductor.
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Example: In the circuit,
 vC1(0-) = 12 V
   and vC2(0-) = 0 V. 

t = 0

+
vC1
_

1 kΩ

+
vC2
_

3 uF 6 uF

iR(t)

Find vC1(t), vC2(t) and 
iR(t).

Step 1:  Initial conditions

12V)(0v)(0v C1C1 == −+

0V)(0v)(0v C2C2 == −+

12mA
1k

012

1kΩ

)(0v)(0v
)(0i C2C1

R =−=−=
++

+

at t = 0+

+
12 V

_

1 kΩ

+
0 V
_

3 uF 6 uF

12 mA
At t=0+:
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After a very long time, iR(∞) = 0.

   Therefore,  vC1(∞) = vC2(∞) or

21
21 Q2Q

6u

Q

3u

Q =→=

Step 2:  Final conditions

24uCQ and 12uCQ

2QQQQ36uC(12V)(3uF)

21

1121

==∴
+=+==

Initial charge stored = final charge stored

+
4 V
_

1 kΩ

+
4 V
_

3 uF 6 uF

0 mA

Therefore,  vC1(∞) = 4 V

vC2(∞) = 4 V
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  iR(t) = 0 + [12 - 0] e-t / 2ms = 12 e -t / 2ms mA

vC1(t) = 4 + [12 - 4] e-t / 2ms 

         = 4 + 8 e -t / 2ms V

vC2(t) = 4 + [0 - 4] e-t / 2ms 

         = 4 - 4 e -t / 2ms V

Step 3: Find the time constant, τ
Req = 1 kΩ

  Ceq = 3 uF in series with 6 uF  =  2 uF

Therefore, τ  = ReqCeq = (1 k)(2u) = 2 ms

Step 4:  f(t) = f(∞) + [f(0+) - f(∞)] e-t/τ
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0 0 .0 0 2 0 .0 0 4 0 .0 0 6 0 .0 0 8 0 .0 1 0 .0 1 2
0

2

4

6

8

1 0

1 2

i
R

v
C 1

v
C 2

iR(t) = 12 e -t / 2ms mA
vC1(t) = 4 + 8 e -t / 2ms V
vC2(t) = 4 - 4 e -t / 2ms V
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Example: Find the inductor 
current iL(t) and the 
inductor voltage vL(t).

Step 2:  Final conditions 
The inductor will behave like a 
short circuit so

vL(∞) = 0 V 

iL(∞) = 10÷ 2400= 4.167 mA

2.4 kΩ

80 uH10 V

t = 0
iL(t)

+
vL(t)

_

2.4 kΩ

80 uH10 V
+

0 V
_

Step 1:  Initial conditions

iL(0+) = iL(0-) = 0 vL(0+) = 10 V
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iL(t) = 4.167 + [0 - 4.167] e-t/33.33n

      = 4.167 - 4.167 e-t/33.33n  mA

Step 3: Find the time constant, τ

Step 4:  f(t) = f(∞) + [f(0+) - f(∞)] e-t/τ

Req = 2.4 kΩ     		Leq = 80 uH

Therefore τ  = Leq / Req = 33.33 ns 

vL(t) = 0 + [10 - 0] e-t/33.33n V

       = 10 e-t/33.33n V
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0 0 .2 0 .4 0 .6 0 .8 1 1 .2 1 .4 1 .6 1 .8 2

x  1 0
­4

0

1

2

3

4

5

6

7

8

9

1 0

i
L

v
L

Forced response

iL(t) = 4.167 - 4.167 e-t/33.33n  mA
vL(t) = 10 e-t/33.33u V

Transient response
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Example: If the switch in the network closes at 
t=0, find v0(t) for t>0. 

+
vo

4Ω

+

- -
3A

- + - +

4ΩvA

24V 2vA

Step 1:  Initial conditions

vA(0-)=3A(4Ω ) 
        = 12V

+
vC(0-)

4Ω

+

- -
3A

- + - +

4ΩvA

24V 2vA
At t=0-

vC(0-)= 2vA+24+vA

        = 60 V

2F
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Step 2:  Final conditions 

+
vo

4Ω

+

- -
3A

- + - +

4ΩvA

24V 2vA

vA,ss = 0

v0,ss = 24V

Step 3: Find the time constant, τ
Since we have a dependent source, the equivalent 
resistance seen by the capacitor can be obtained 
by finding vOC/iSC

At t=0+,       
v0(0+) = vC(0+) = vC(0-) = 60V



Department of Electrical and Electronics Engineering EEE 33 - p72

Determine vOC 

+
vOC

4Ω

+

- -
3A

- + - +

4ΩvA

24V 2vA

v0C = 24V

Get iSC 

iSC

4Ω

+

-
3A

- + - +

4ΩvA

24V 2vA

From KVL,
2vA + vA = -24

vA = -8V

The two resistors are in parallel, thus

2iSC –24 –2vA = 0 iSC = 4 A
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The time constant is

τ  = ReqC = 6Ω (2F)= 12sec

Step 4:  f(t) = f(∞) + [f(0+) - f(∞)] e-t/τ

v0(t) = 24 + [60 - 24] e-t/12  V

       = 24 + 36 e-t/12  V

The equivalent resistance is
Req = vOC ÷ iSC = 24V / 4A = 6Ω
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Unit Step Forcing Function





>
<

=
0t1

0t0
)t(u

     

     
+
_

u(t) u(t)

t

u(t)

1
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Example

+
_5 u(t) V

t < 0: t > 0:

+
_5 V

t

5u(t)

5V
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Translated 
Step Function





>
<

=−
o

o
o

tt

tt
ttu

     1

     0
)(

t0         t

u(t-t0)

1

Step Function 
Inverted in Time





>
<

=−
o

o
o

tt

tt
ttu

     0

     1
)(

t0         t

u(t0-t)

1
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Example

2 - t > 0 or t < 2 s:

2 u(2 - t)
mA

2 mA

2 - t < 0 or t > 2 s:

2         t

2u(2-t)
2mA
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Example: The circuit shown is initially at steady-
state condition. Formulate the expression for vC(t) 
and iR(t) for t>0. 

Evaluate the forcing function:

+
vc

3kΩ

6k
Ω

+

-
-

24u(t) – 24u(t-4ms) F1µ

iR

t

24u(t)

124V

t

24u(t-4ms)

24V

4ms

24u(t) - 24u(t-4ms)

24V

4ms     t
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We need to evaluate the circuit using two time 
intervals:  0 < t < 4ms  , voltage source = 24V
                t > 4ms        , voltage source = 0

First time interval:  0 < t < 4ms

At t<0, the circuit is in steady-state. The 
3kΩ  and 6kΩ  resistors will dissipate whatever 
energy is initially stored in C, thus vC(0-) = 0.  

+
vC(0+)=0

3kΩ

6kΩ
+

-
-

24V F1µ

iR(0+)
At t = 0+:

iR(0+) = 0

vC(0+) = vC(0-) = 0
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Time constant for 0<t<4ms

CReq=τ

msec 2=
F))(1K 2( µΩ=

V16)V24(
63

6
v ss,C =

+
=  

+
vC

3kΩ

6k
Ω

+

- -
24 V F1µ

iR

The transient response is of the form
-500teKv 1t,C = -500teKi 2t,R =

Equivalent circuit at steady-state

+

3kΩ

6k
Ω

+

- -
24 V vC,ss

iR,ss

mA67.2
k6k3

V24
i ss,R =

Ω+Ω
=



Department of Electrical and Electronics Engineering EEE 33 - p81

Complete Response

mAeK67.2)t(i

VeK16)t(v

2R

1C

500t-

-500t

+=

+=

Evaluate the constants K1 and K2 using initial 
conditions. 

Thus, we get

msec 4t0 V    -500t <<−= e1616)t(vC

-16K   or   1 =+==+
1C K160)0(v

-2.67K   or   2 =+==+
2R K67.20)0(i

msec 4t0mA     -500t <<−= e67.267.2)t(iR
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 Vms )-500(0.004- 83.13e1616)4(vC ≈−=

Second time interval:  t > 4ms

To get initial conditions, determine the voltage vC 
right before switching.

vC(4ms+) = vC(4ms-)
              = 13.83 V

  

 )-500(0.004

 mA31.2

e67.267.2)ms4(iR

≈
−=−

Note:

At t = 4ms+

6kΩF1µ
+vC(4ms+)

13.83V -

iR3kΩ

 )ms4(i)ms4(i RR
+− ≠

iR(4ms+) = 13.83 ÷ 6k
     = 2.305 mA
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msec  

F))(1K 

2

2(CR' eq

=

µΩ==τ

This is a source-free network, so at steady-state 
i’R,ss=0 and v’C,ss=0.

0t'   V,-500t' >= e83.13)'t(vC

Equivalent circuit for t ≥  4 ms.

6kΩF1µ
+

vC
-

iR3kΩ
Req = 3kΩ  || 6kΩ  = 2KΩ

Let t=t’+4 ms. For t’ ≥  0, the capacitor voltage 
and resistor current is described by

0t'  mA, -500t' >= e305.2)'t(iR
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0 0 .2 0 .4 0 .6 0 .8 1 1 .2 1 .4 1 .6 1 .8 2
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­4

0

1

2

3

4

5

6

7

8

9

1 0

i
L

v
L

Transient and Steady-State Response

iL(t) = 4.167 - 4.167 e-t/33.33n  mA
iL(0+)=0A         iL(∞)=4.167mA

vL(t) = 10 e-t/33.33u V
vL(0+)=10V         vL(∞)=0V 

τ =33.33 ns         5τ =1.67x10-4 s 

Transient 
response Steady-state 

Response
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Example: The circuit shown is initially at steady-
state condition. Formulate the expression for vC(t) 
and iR(t) for t>0. 

Evaluate the forcing function:

+
vc

3kΩ

6k
Ω

+

-
-

24u(t) – 24u(t-4ms) F1µ

iR

t

24u(t)

124V

t

24u(t-4ms)

24V

4ms

24u(t) - 24u(t-4ms)

24V

4ms     t
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Thus, the expression for vC and iR for t>0

16 – 16e-500t V,         t < 4ms

13.83e-500(t-4ms) V,     t > 4ms
vC(t) = 

2.67 – 2.67e-500t mA, t < 4ms

2.305e-500(t-4ms) mA,   t > 4ms
iR(t) = 
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Graph for vc(t)16 – 16e-500t V

13.83e-500(t-4ms)

VC(t)

(V)

VC(t)

(V)

t

16 – 16e-500t V,         t < 4ms

13.83e-500(t-4ms) V,     t > 4ms

τ =2 ms        
 5τ = 10 ms 
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Graph for iR(t)
2.67 – 2.67e-500t mA

2.305e-500(t-4ms) mA

iR(t)

(mA)

t

2.67 – 2.67e-500t mA, t < 4ms

2.305e-500(t-4ms) mA,   t > 4ms

τ =2 ms        
 5τ = 10 ms 
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Equivalent of Switching

General

Network

Vu(t-t0)
+_

General

Network+_V

Equivalent circuit

General

Network

Iu(t-t0)

t0        t

i(t)

General

NetworkI

Equivalent circuit

t0        t

v(t)
V
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+
_

30 Ω

50 Ω

2 H2 u(t)

100 u(t)

iExample: Find i(t) 
for t>0.

When t < 0, the sources 
are off, thus i(0-) = 0 A

30 Ω

50 Ω

2 H

i

At t = 0+, the sources 
turn on

+
_

30 Ω

50 Ω

2 H2 A

100 V

i

i(0+) = i(0-) = 0 A
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Final condition: After a very long time, the 
inductor will behave like a short circuit

+
_

30 Ω

50 Ω

2 A

100 V

i

ix

From KCL, i + ix = 2

Thus, i = 2 A and ix = 0 
i(∞) = 2 A

KVL yields

-100 – 30ix + 50i = 0

Time constant:
Leq = 2 H

Req = 30 + 50 = 80 Ω
τ  = 0.025 s

Finally, i(t) = i(∞) + [i(0+) – i(∞)]e-t/τ

   i(t) = 2 + (0 – 2) e-t/0.025 = 2 - 2 e-40t A
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Sinusoidal Sources
Consider the network shown. 
Let v(t)=Vm sin ω t where Vm 
and ω  are constant. 

R

Lv(t)
+

-

t=0

i
For t ≥  0, we get from KVL

t sinVRi
dt
di

L m ω=+

The transient response is

0t   Ki
t

L
R

t ≥ε=
−

Remember: The transient response is independent 
of the source.
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The steady-state response is the solution of the 
differential equation itself. Let

t cosKt sinKi 21ss ω+ω=

t sinK-t cosK
dt
di

21
ss ωωωω=

t sinKL-t cosLK 21 ωωωω

t sinVt cosRKt sinRK m21 ω=ω+ω+

Substituting in the original equation

t sinVRi
dt
di

L m ω=+
gives
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Substitution gives

t sinKL-t cosLK 21 ωωωω

t sinVt cosRKt sinRK m21 ω=ω+ω+

Comparing coefficients, we get

21m KLRKV ω−= 12 KLRK0 ω+=and

Solving simultaneously, we get

222
m

1 LR
RV

K
ω+

= 222
m

2 LR
LV

K
ω+

ω−=and
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Substituting K1 and K2

t) cos Lt sin R( 
LR

V
i 222

m
ss ωω−ω

ω+
=

The complete response is

t) cos Lt sin R( 
LR

V
)t(i 222

m ωω−ω
ω+

=

0t   K
t

L
R

≥ε+
−

The steady-state response is

t cosKt sinKi 21ss ω+ω=
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