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Outline

•  Fundamental Capacitor Characteristics
•  Fundamental Inductor Characteristics
•  L and C Combinations
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Capacitor

 The capacitor is a circuit element that consists 
of two conducting surfaces separated by a non-

conducting (dielectric) material. It is an 
important element as it has the ability to store 

energy in its electric field.
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Fundamental Characteristics

The charge on the capacitor is   q = Cv

Since the current is  
dt
dq

i =

Then for a capacitor

dt
)Cv(d

i = or
dt
dv

Ci =

+

v

-

C

i

Re-arranging the equation and integrating

dti
C

dv
1= ∫

∞−
=

t
dti

C
)t(v

1
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∫ ∫
∞−

+=
0

0

11 t
dt)t(i

C
dt)t(i

C
)t(v

This can be expressed as two integrals

∫+=
t

dt)t(i
C

)t(v)t(v
0

0
1

Power is given by
dt

)t(dv
C)t(v)t(i)t(v)t(p ==

Hence the energy stored in the electric field is

∫
∞−

=
t

C dt
dt
dv

)t(Cv)t(w ∫
−∞

=
)t(v

)(v
dv)t(vC

)t(v

)(v
)t(Cv)t(wC −∞

= 2
2
1 J)t(Cv)t(wC

2
2
1=
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v(t)

+

v
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2mF

i

5   , 0< t < 5 s 

2t-5 , 5< t< 10  s

  -0.5t+20, 10< t< 30  s

5   , t > 35 s

v(t) =

Example: Find the current 
iC(t) given

At t < 5 sec:       iC(t) = 2mF (0) = 0 A

5 < t < 10 sec:   iC(t) = 2mF (2) = 4 mA

10 < t < 30 sec:  iC(t) = 2mF (-0.5) = -1 mA

t > 30 sec:          iC(t) = 2mF (0) = 0 A

dt
dv

Ci =
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i(t) mACapacitor is 
charging 

(absorbing 
power)

Capacitor is discharging 
(delivering power)

Plot of the capacitor voltage and current:
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Example: Compute the energy stored in a 4-µ F 
capacitor at time t=3ms given the current i(t). The 
capacitor is initially uncharged.

16

1 2 3 4

current (µA)

t (ms)
-8

10
5

8x10-3t, 0< t< 2ms 

 -8x10-6,  2< t< 4 ms 
i(t) =

At 0< t < 2ms:
∫+=
t

dt)t(i
C

)t(v)t(v
0

0
1

∫ −
−=

t
xdx)(

)(
)t(v

0

3
6

108
104

1
= 103 t2    V
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At time t=2ms: v(2ms) = 103(2x10-3)2 = 4 mV

In the period 2ms < t < 4ms:

∫
−

+=
t

x
dt)t(i

C
)ms(v)t(v

3102

1
2

∫
−

−
−

− −+=
t

x
dx)(

)(
x

3102

6
6

3 108
104

1
104

= 8x10-3  – 2t    V

t

x
xx

3102

3 2104
−

− −=

   103t2            V  , 0< t < 2ms 

–2t + 8x10-3   V,  2< t < 4 ms 
v(t) =
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The energy in the electric field of the capacitor 
at time t = 3 ms:

)ms(Cv)ms(w 33 2
2
1=

The voltage of the capacitor at time t = 3ms:

v(3ms) = -2(3)(10-3)  + 8(10-3) 

= 2x10-3  V

J)x)(( 236
2
1 102104 −−=

w(3ms) = 8 pJ
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Plot of the capacitor current, voltage, power 
and energy:
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Inductor

 The inductor is a circuit element that consists 
of of a conducting wire usually in the form of a 
coil. It is an important element as it has the 
ability to store energy in its magnetic field.

+
v
-

i
L

http://www.powerlabs.org/images/inductors.jpg
http://images.google.com.ph/imgres?imgurl=http://www.lcr-inc.com/images/photos/Coils_Chokes_Inductors.jpg&imgrefurl=http://www.lcr-inc.com/products/lcrcoils.htm&h=237&w=330&sz=12&tbnid=WQ3U1dYa4k4J:&tbnh=81&tbnw=114&hl=en&start=21&prev=/images%3Fq%3Dinductors%26start%3D20%26hl%3Den%26lr%3D%26sa%3DN
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Fundamental Characteristics

The voltage across an inductor is

Re-arranging the equation and integrating

dtv
L

di
1= ∫

∞−
=

t
dtv

L
)t(i

1

dt
di

Lv =

This can also be expressed as

∫+=
t

dt)t(v
L

)t(i)t(i
0

0
1

+
v
-

i
L
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Power is given by

)t(i
dt

)t(di
L)t(i)t(v)t(p ==

Hence the energy stored in the magnetic field is

∫
∞−

=
t

L dt)t(i
dt
di

L)t(w

∫
−∞

=
)t(i

)(i
di)t(iL

J)t(Li)t(wL
2

2
1=
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Example: Find the voltage 
across the source, vS(t), 
given iS(t) = 0.5 sin 10t.

0.4 H

2Ω
iS(t)

+
vS(t)

-

+ vR -

+ 
vL 
-

KVL around the loop,   vS = vR + vL

From Ohm’s Law,
vR = 2(0.5 sin 10t) = sin 10t  V

For the inductor

)tsin.(
dt
d

.vL 105040=

= 0.4(0.5)(10)cos 10t  = 2 cos 10t  V

Thus,     vS(t) = sin 10t + 2 cos 10t   V
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vL

iL = iS

Plot of the inductor voltage 
and current
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Dual Relationship of C and L

The defining equations for capacitors and 
inductors are identical if we interchange C with L 
and i with v.

Capacitor          Inductor

dt
dv

Ci =

∫+=
t

dt)t(i
C

)t(v)t(v
0

0
1

)t(Cv)t(wC
2

2
1=

dt
di

Lv =

∫+=
t

dt)t(v
L

)t(i)t(i
0

0
1

)t(Li)t(wL
2

2
1=
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Dual Relationship of C and L

• Voltage cannot change 
instantaneously.

• Current cannot change 
instantaneously.

Capacitor Inductor

• If the voltage is 
constant, the current is 
zero.
 Capacitor acts like an 

open circuit to DC.

• If the current is 
constant, the voltage 
is zero.
 Inductor acts like a 

short circuit to DC.
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Capacitor Combinations

C1 C2 C3

Cn

Ceq

neq C
...

CCC
1111

21

+++=

Capacitors in Series Capacitors in Parallel

C1 C2 C3 Cn

Ceq

Ceq = C1+ C2+ … + Cn
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Inductor Combinations

neq L
...

LLL
1111

21

+++=

Inductors in Series Inductors in Parallel

Leq = L1+ L2+ … + Ln

L1 L2 L3

Ln

Leq

L1 L2 L3 Ln

Leq
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RC Op-Amp Circuit :
Differentiator 

C1

R3

vs

R2

+
vo

_

i- = 0

V+ 

V-

i+ = 0

i1
i2

KCL at inverting terminal:

i1 + i2 = i-

−
−

− =−+− i
R

vv
)vv(

dt
d

C s
2

0
1

But i-= i+= 0 and v-= v+=0

So,

0
2

0
1 =+

R
v

dt
dv

C s

dt
dv

CR)t(v s
120 −=or
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RC Op-Amp Circuit :
Integrator 

KCL at inverting terminal:

i1
i2

i1 + i2 = i-

−−
− =−+−

i)vv(
dt
d

C
R

vvs
02

1

R1

R3

vs

C2

+
vo

_

i- = 0

V+ 

V-

i+ = 0

dt
dv

C
R
vs 0

2
1

−= ∫
∞−

−=
t

sO dx)x(v
CR

)t(v
21

1

or )t(

t

sO vdx)x(v
CR

)t(v 0
021

1
=+−= ∫

If the capacitor is 
initially uncharged, ∫−=

t

sO dx)x(v
CR

)t(v
021

1
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Simplifying the capacitors,

= 1.2 µ F
)()(
))()((

Ceq 66

66

1
102103

102103
−−

−−

+
=

Ceq2 = 1.2 µ F + 0.8 µ F = 2 µ F

3µ F
vs

+
vo

_

2µ F

0.8 
µ F

10kΩExample: Determine 
the output voltage 
vO(t) given the input

    t2,  0 < t < 2

   -0.8t + 5.6, 
           2 < t < 7

vS(t)=
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Thus, this is a differentiator circuit with 
C1 = 2 µ F and R2 = 10kΩ .

At time 0 < t < 2 sec,

)t(
dt
d

)()()t(v 263
0 1021010 −−=

= -0.02 (2t) = -0.04t   V
At time 2 < t < 4 sec,

).t.(
dt
d

)()()t(v 65801021010 63
0 +−−= −

= -0.02 (-0.8) = 0.016   V

-0.04t   V,    0 < t < 2 
 0.016   V,    2 < t < 7 

vO(t)=
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Example: A square wave 
(shown) is used as input to the 
RC integrator circuit. Determine 
the output vO(t) if R1= 5kΩ  and 
C2 = 0.2 µ F. The capacitor is 
initially uncharged.

20

-20

0.1 0.2 0.3 0.4 t(sec)

vs(t) (mV)

= -20t  V  , 0< t <0.1

At time 
0<t< 0.1: ∫−−=

t

O dx.
))(.)((

)t(v
0

63
020

1020105

1

tx).(
0

3 02010−=

vO(0.1) = -20(0.1) = -2 V
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= 20t – 4 V, 0.1<t< 0.2

At time 0.1< t < 0.2:

).(vdx.
))(.)((

)t(v O

t

.
O 10020

1020105

1

10
63

+−−= ∫−

202010
10

3 −= t
.

x).(

vO(0.02) = 20(0.2) - 4 = 0 V

= -20t + 4   V, 0.2<t< 0.3

At time 
0.2< t < 0.3: ).(vdx.)t(v O

t

.
O 2002010

20

3 +−= ∫

= 20t – 8 V,  0.3<t< 0.4

At time
0.3< t < 0.4: ).(vdx.)t(v O

t

.
O 3002010

30

3 +−−= ∫
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5k
Ωvs

0.2µ F

+
vo

_

20

-20

0.1 0.2 0.3 0.4 t(sec)

vs(t) (mV)

-2

0.1
0.2

0.3

0.4 t(sec)

vO(t) (V)   -20t  V    ,     0<t<0.1 sec

   20t – 4 V,      0.1<t< 0.2

   -20t + 4  V,   0.2<t< 0.3

   20t – 8 V,      0.3<t< 0.4

vO(t)=
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Coupled Circuits
Coils that share a common magnetic flux are 
mutually coupled; that is, a time-varying current in 
one coil induces a voltage in the other coil.

Example: Two-winding transformer

+
e1
-

i1

N1 N2

+
e2
-

i2=0φ
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dt
di

L
dt
di

di
d

N
dt
d

Ne 1
11

1

1
111 =φ=φ=

An increasing current i1 in coil 1 (directed as 
shown) results in a magnetic flux φ  which induces 
voltages e1 and e2 in coils 1 and 2, respectively. 
From Faraday’s Law, we get

Note: L11 and L12 are self and mutual inductances,  
respectively.

1 1
2 2 2 12

1

di did d
e N N L

dt di dt dt

   
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Polarity Marks
One end of each coil is marked to indicate the 
relative polarity of the induced voltages.

The voltages from the marked terminals to the 
unmarked terminals have the same polarity.

+
e1
-

+
e2
-

+
e1
-

-
e2
+
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When currents flow in both coils, the induced 
voltage will have a component due to self-
inductance and another component due to the 
mutual inductance.

dt
di

L
dt
di

Le

dt
di

L
dt
di

Le

2
22

1
212

2
12

1
111

+=

+=

dt
di

L
dt
di

L e

dt
di

L
dt
di

Le

2
22

1
122

2
12

1
111

+−=

−=

+
e1
-

+
e2
-

i 1 i 2

+
e1
-

+
e2
-

i 1 i 2
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Mesh 3: dt )ii(
C
1

dt
di

M
dt
di

Lv 23
1 3 

32 ∫ −++=−

Mesh 2: ∫ −+= dt )ii(
C
1

iR0 3222

Mesh 1:
dt
di

M
dt
di

L
dt
di

LiRv 3 1 
2

1 
1111 +++=

i1

Example: Write 
the mesh equations
that describe the
network.

L1

C
v1

+

-

R1

R2

v2

+

-
ML2 L3 i3

i2
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Example: Write the mesh equations that describe 
the network shown.

)ii(R
dt
di

M         

)ii(
dt
d

M)ii(
dt
d

LiR)t(v

212
3 

13

3212 21111

−+−

−+−+=

For mesh 1, we get

L1

C
v(t)

+

-

R1

R2

i1 i2 i3L2

L3
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For meshes 2 and 3, we get

dt
di

M)ii(
dt
d

M)ii(
dt
d

L     

dt
di

M)ii(
dt
d

M)ii(
dt
d

L)ii(R0

3
322112322

3
132312121122

+−+−+

+−+−+−=

∫+−+−+

+−−+−=

dti
C
1

)ii(
dt
d

M)ii(
dt
d

M     

dt
di

L
dt
di

M)ii(
dt
d

M)ii(
dt
d

L0

332231213

3
3

3
321212232
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Example: Write the loop equations that describe 
the network.

L1

C
v(t)

+

-

R1

R2

L2

L3

12
3

13
2

12
1

13211 iR
dt
di

L
dt
di

L
dt
di

L)iii(R)t(v +−++++=

dt
di

L
dt
di

L
dt
di

L)iii(R)t(v 3
23

1
12

2
23211 +++++=

dt
di

L
dt
di

L
dt
di

L)iii(R)t(v 2
23

1
13

3
33211 +−+++=

i1 i2 i3
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Equilibrium Equations 
Loop Current Formulation
     • Number of current variables equals number   
       of distinct loops  
     • KVL equation for each loop

Node Voltage Formulation
     • Number of voltage variables equals number  
       of nodes minus one (reference)
     • KCL equation for each node except reference

State Variable Formulation
     • Inductor currents and capacitor voltages are
       used as variables
     • General Form of Equation:  u Bx Ax +=
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Example: Use the loop current method to describe 
the network shown. L

Cv(t)
+

-

R

+ -vR
+ -vL +

-
vC

We need only one current variable. 

i(t)

∫ ∞−
++=

t
dt)t(i

C
1

dt
)t(di

L)t(Ri)t(v
or

CLR vvv)t(v ++=
From KVL, we get
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Example: Use the node voltage method to 
describe the network shown.

CLR iii)t(i ++=

We need only one voltage variable. From KCL, we 
get

i(t)

+v(t)

C

iR iL iC
R

REF

L

dt
)t(dv

Cdt)t(v
L
1

R
)t(v

)t(i
t

++= ∫ ∞−

or
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Example: Write the mesh equations that describe 
the network shown.

∫ ∞−
−++=

t

1222
2 dt)ii(

C
1

iR
dt
di

L0Mesh 2:

L

Cv(t)
+

-

R1

R2
i1 i2

Mesh 1: ∫ ∞−
−+=

t

2111 dt)ii(
C
1

iR)t(v



Department of Electrical and Electronics Engineering 42

Example: Write the nodal equations that describe 
the network shown.

∫ ∞−
−+=

t

21
1

1 dt)vv(
L
1

R
v

)t(iNode 1:

REF

Ci(t)

+v1

R1

+v2

R2

L

Node 2:
dt
dv

C
R
v

dt)vv(
L
1

0 2

2

2
t

12 ++−= ∫ ∞−
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Example: Write the mesh equations that describe 
the network shown.

L

C

v(t)
+

-

R1

R2
i1 i2 i(t)i3

Mesh 3: )t(ii3 =

Mesh 1: )ii(
dt
d

LiR)t(v 2111 −+=

Mesh 2: )ii(Rdti
C
1

)ii(
dt
d

L0 322

t

212 +++−= ∫ ∞−
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Example: Write the nodal equations that describe 
the network shown.

REF

C

v(t)

+v2

R1

+v3

R2L i(t)
+

-

+v1

Node 1: )t(vv1 =

Node 2: )vv(
dt
d

Cdtv
L
1

R
vv

0 32

t

2
1

12 −++−= ∫ ∞−

Node 3:
2

3
23 R

v
)vv(

dt
d

C)t(i +−=
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Example

REF

C2

vs

+vb

R1

+vc

R2

L

is2

+va

is1

C1

+ -

∫ −+−+= dt)vv(
L
1

)vv(
dt
d

C
R
v

i baca1
1

a
1sNode a:

∫ −++−+= dt)vv(
L
1

dt
vd

C)vv(
dt
d

C
R
v

i ab
b

2ac1
2

c
2s

Super 
node:

cbs vvv −=Voltage source:
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State Variable Analysis

State variables

 • Inductor Currents 
 • Capacitor Voltages

General Form of the State Equation

Solution of the State Equation 

•  numerical integration                       

BuAxx +=
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General Procedure
1. Define a current variable for each inductor and a 

 
    voltage variable for each capacitor. 2. Write a KVL equation for each inductor in the 

circuit. Write a KCL equation for each capacitor 
in the circuit.

BuAxx +=

3. Express the equation in the matrix form

x = vector of inductor currents and capacitor
      voltages (nx1)
u = vector of sources (mx1)

A (nxn) and B (nxm) are constant matrices
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Example
L

Cv(t)
+

-

R

+

-
vC

iL

dt
dv

Ci c
L =

From KCL, we get

c
L

L v
dt
di

LRi)t(v ++=From KVL, we get

Equations should be 
in terms of iL, vC, and 

v(t).
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Re-arranging the equations,

dt
dv

Ci c
L =

c
L

L v
dt
di

LRi)t(v ++=

In matrix form, we get

-R/L -1/L

1/C 0

1/L

0C

L

v
i

C

L

v
i



v(t)= +

L
c i

C

1

dt

dv =
Lc i

C

1
v =or

cL
L v

L

1
i

L

R
)t(v

L

1

dt

di −−=

)t(v
L

1
v

L

1
i

L

R
i cLL +−−=
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Example
+

-
vC

iL L Ci(t) R

 v
dt
di

L c
L =

From KVL, 
we get

dt
dv

Ci 
R
v

)t(i c
L

c ++=

From KCL, we get

 v
L

1

dt

di
c

L =

C

i
 

RC

v
)t(i

C

1

dt

dv Lcc −−=

Equations should be in 
terms of iL, vC, and i(t).
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-1/RC

1/L

-1/C

0

1/CC

L

v
i

C

L

v
i



i(t)= +

0

In matrix form, we get

 v
L

1

dt

di
c

L =

C

i
 

RC

v
)t(i

C

1

dt

dv Lcc −−=
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Example
L

Cv(t)
+

-

R1

R2

iL+

-

vC

L2
L

c iR
dt
di

Lv +=

From KVL, 
we get

L
c

1

c i
dt
dv

C
R

v)t(v +=−
From KCL, we get

In matrix form, we get

-1/R1C

1/L

-1/C

-R2/L

1/R1CC

L

v
i

C

L

v
i



v(t)= +

0

Equations 
should be 
in terms of 
iL, vC, and 

v(t).
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Example

Ci(t) R1 R2

L

iL +

-

vC

 
dt
dv

C
R
v

i c

2

c
L +=

From KCL, 
we get

c
L

1L v
dt
di

LR]i)t(i[ +=−From KVL, we get

In matrix form, we get

-1/R2C

-1/L

1/C

-R1/L R1/L

C

L

v
i

C

L

v
i



i(t)= +

0
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22L1Lc
1L

11L1 R])t(iii[v
dt
di

LiR)t(v +−+++=

Example

dt
dv

Cii c
2L1L +=

22L1Lc
2 L

2 R])t(iii[v
dt

di
L +−+=

C

v(t)

R1

R2
L2 i(t)

+

-

L1

iL1
+ -vC

iL2

2L1LC

C2R

iii

i)t(ii

−=
+=

iR2

iC
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)t(i
L
R

L
)t(v

L
v

i
L
R

i
L

)RR(
i c

LLL
1

2

11
2

1

2
1

1

21
1 ++−++−=

•

Example

21
11

LLc i
C

i
C

v +=
•

)t(i
L
R

v
L

i
L
R

i
L
R

i cLLL
2

2

2
2

2

2
1

2

2
2

1 ++−=
•

C

v(t)

R1

R2
L2 i(t)

+

-

L1

iL1
+ -vC

iL2
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In matrix form, we get

-1/L1-(R1+R2)/L1

=

R2/L1

1/L2R2/L2 -R2/L2

01/C -1/C C

2L

1L

v
i
i

C

2L

1L

v
i
i







-R2/L1

+

1/L1

R2/L20

00
)t(i
)t(v
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Systematic Procedure
1. Select a tree. Place capacitors and voltage 
sources in the tree and inductors and current 
sources in the cotree. Place control voltages in the 
tree and control currents in the cotree, if possible.

2. Assign a voltage variable for each capacitor and 
a current variable for each inductor. Express the 
voltage across every tree branch and the current 
through every link in terms of the sources and 
state variables, if possible. Otherwise, define a new 
voltage or current variable.

3. Write the C equations. Use KCL to write one 
equation for each capacitor. Set ic equal to the sum 
of link currents at either end of the capacitor. 
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4. Write the L equations. Use KVL to write one 
equation for each inductor. Set vL equal to the sum 
of tree-branch voltages in the single closed path 
where L lies.

5. Write the R equations, if necessary. If a voltage 
variable was assigned to a resistor in the tree, use 
KCL to set iR equal to the sum of link currents. If a 
current variable was assigned to a resistor in the 
cotree, use KVL to set vR equal to the sum of tree 
branch voltages. Solve these equations to get 
expressions for vR and iR in terms of the sources 
and state variables.
6. Write the resulting equations in the form   

BuAxx +=
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Example

Note: Only one tree
          is possible.

1/5H

1/6Fvs

+

-

3Ω

is

a
b

c

d

1/7F

a
b

c

d

+

-

vC2+ -

vC1

iL3
vv s1c −

vs is

+

-

First, we select a tree.
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1/5H

1/6Fvs

+

-

3Ω

is

a
b

c

d

1/7F

a
b

c

d

+

-

vC2+ -

vC1

iL3
vv s1c −

vs is
+

-

KCL at node b: 0)vv(
3
1

i
dt

dv
6
1

s1cL
1c =−++

KCL at node c: 0ii
dt

dv
7
1

sL
2c =++

KVL for inductor: 0v
dt
di

5
1

vv 1c
L

2cs =−+−
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KCL at node b: 0)vv(
3
1

i
dt

dv
6
1

s1cL
1c =−++

KCL at node c: 0ii
dt

dv
7
1

sL
2c =++

KVL for inductor: 0v
dt
di

5
1

vv 1c
L

2cs =−+−

=

L

2C

1C

i
v
v

L

2C

1C

i
v
v







055
700
602

−
−−

+
s

s

i
v

05
70

02

−
−

In matrix form, we get
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Example 1/9F

2Ωis+

-

2/9H

6Ω
3Ω

vs

1Ω

a
b

c

d

e
First, we select a tree.

Note: Many trees
         are possible.

a
b

c

e

d
+
vs

-

is

+ vC -
iL

2iL
+

-
vR

+

-

6
vv CR −

iR
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Example
1/9F

2Ωis+

-

2/9H

6Ω
3Ω

vs

1Ω

a
b

c

d

e

a
b

c

e

d
+
vs

-

is

+ vC -
iL

2iL
+

-
vR

+

-

6
vv CR −

iR
KCL for capacitor at b:

6
vv

iii
dt
dv

9
1 CR

LRs
c −++=+

KVL for inductor: L
L

CR i2
dt
di

9
2

vv ++=
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Example
1/9F

2Ωis+

-

2/9H

6Ω
3Ω

vs

1Ω

a
b

c

d

e

a
b

c

e

d
+
vs

-

is

+ vC -
iL

2iL
+

-
vR

+

-

6
vv CR −

iR KCL equation for 
1Ω  resistor in tree:

6
vv

iii
1
v CR

LRs
R −−−−=

KVL for 3Ω  resistor in cotree : sCRR vvvi3 −−=
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KCL at node b:

6
vv

iii
dt
dv

9
1 CR

LRs
c −++=+ (1)

KVL for inductor:

L
L

CR i2
dt
di

9
2

vv ++= (2)

KCL equation for 1Ω  resistor in tree:

6
vv

iii
1
v CR

LRs
R −−−−= (3)

KVL for 3Ω  resistor in cotree :

sCRR vvvi3 −−= (4)
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Solve equations 3 and 4 simultaneously for vR  and 
iR. We get

ssL
C

R v 
9
2

i 
3
2

i 
3
2

3
v

v ++−=

ssLCR v 
27
7

i 
9
2

i 
9
2

v
9
2

i −+−−=

Substitute in equations 1 and 2, then simplify. We 
get in matrix form

L

C

i
v

= +
123
63

−−
−

s

s

i
v

L

C

i
v




31
62 −−
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Example
+ -

1/5H

1/6Fvs

+

-

3Ω

is

a

b
c

e

1/7F

d

ix

18ix

First, we select a tree.

Note: Only one tree
          is possible.

a

b
c

e

d

vs

+

-

18ix
+

-

is
ix vC1

+

-

vC2
+

-

iL

3
vv S1C −
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+ -

1/5H

1/6Fvs

+

-

3Ω

is

a

b
c

e

1/7F

d

ix

18ix
a

b
c

e

d

vs

+

-

18ix
+

-

is
ix vC1

+

-

vC2
+

-

iL

3
vv S1C −

KCL for C1 
at node c:

)vv(
3
1

i
dt

dv
6
1

0 s1cL
1c −++=

KCL for C2 at 
supernode (ad): sL

2c ii
dt

dv
7
1

0 ++=
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+ -

1/5H

1/6Fvs

+

-

3Ω

is

a

b
c

e

1/7F

d

ix

18ix
a

b
c

e

d

vs

+

-

18ix
+

-

is
ix vC1

+

-

vC2
+

-

iL

3
vv S1C −

KVL for L:

KCL for control 
current ix at c:

1c
L

x2cs v
dt
di

5
1

i18vv0 −+−−=

)vv(
3
1

i i s1cLx −+=
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Node c: )vv(
3
1

i
dt

dv
6
1

0 s1cL
1c −++=

Supernode (ad): sL
2c ii

dt
dv

7
1

0 ++=

KVL for L: 1c
L

x2cs v
dt
di

5
1

i18vv0 −+−−=

Control Current ix: )vv(
3
1

i i s1cLx −+=

=

L

2C

1C

i
v
v

L

2C

1C

i
v
v







90535
700
602

−
−−

+
s

s

i
v

035
70

02

−
−
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