Chapter 1

Analysis of Resistive Circuits

Artemio P. Magabo
Professor of Electrical Engineering

Department of Electrical and Electronics Engineering 5

University of the Philippines - Diliman

Topics

- a. Network Reduction Techniques
 - Series and Parallel Circuits
 - Delta-Wye Transformation
 - 3. Current and Voltage Division
 - 4. Source Transformation
- b. Dependent Sources
- Application of Circuit Analysis on Operational Amplifiers
- d. Nodal Analysis
- e. Mesh Analysis
- f. Ladder Method

Equivalence

Two electric circuits are said to be equivalent with respect to a pair of terminals if the voltages across the terminals and currents through the terminals are identical for both networks.

If $V_1 = V_2$ and $I_1 = I_2$, then with respect to terminals ab and xy, circuit 1 and circuit 2 are equivalent.

Resistors in Series and in Parallel

Resistors in Series

$$R_{eq} = R_1 + R_2 + \dots + R_n$$

Resistors in Parallel

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

Special Case
Two resistors in parallel:

$$R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$$

Delta-Wye Transformation

The transformation is used to establish equivalence for networks with 3 terminals.

For equivalence, the resistance between any pair of terminals must be the same for both networks.

Delta-to-Wye Transformation Equations

$$R_1 = \frac{R_a R_b}{R_a + R_b + R_c} \qquad R_2 = \frac{R_b R_c}{R_a + R_b + R_c}$$

$$R_2 = \frac{R_b R_c}{R_a + R_b + R_c}$$

$$R_3 = \frac{R_c R_a}{R_a + R_b + R_c}$$

Wye-to-Delta Transformation Equations

$$R_{a} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}} \qquad R_{b} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{3}}$$

$$R_c = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$$

Example: Find the equivalent resistance across terminals AB.

Starting from the right, we get for resistors in series

$$R_{eq1} = 5 + 10 + 3 = 18 \Omega$$

 $R_{\rm eq1}$ is in parallel with the 9Ω -resistor.

$$R_{eq2} = \frac{(18)(9)}{18+9} = 6 \Omega$$

The resulting network becomes

Convert wye into delta

$$3\Omega$$
 1Ω
 1.5Ω

$$R_{c} \stackrel{?}{\underset{>}{\overset{>}{\underset{>}}{\overset{>}{\underset{>}}{\overset{>}{\underset{>}}{\overset{>}{\underset{>}}{\overset{>}{\underset{>}}{\overset{>}{\underset{>}}{\overset{>}{\underset{>}}{\overset{>}{\underset{>}}{\overset{>}{\underset{>}}{\overset{>}{\underset{>}}{\overset{>}{\underset{>}}{\overset{>}{\underset{>}}{\overset{>}{\underset{>}}{\overset{>}{\underset{>}}{\overset{>}{\underset{>}}{\overset{>}{\underset{>}}{\overset{>}}{\underset{>}}{\overset{>}}{\underset{>}}{\overset{>}}{\underset{>}}{\overset{>}}{\underset{>}}{\overset{>}}{\underset{>}}{\overset{>}{\underset{>}}{\overset{>}}{\underset{>}}{\overset{>}}{\underset{>}}{\overset{>}}{\underset{>}}{\overset{>}}{\underset{>}}{\overset{>}{\underset{>}}{\overset{>}}{\overset{>}}{\underset{>}}{\overset{>}}{\overset{>}}{\underset{>}}{\overset{>}}{\overset{>}}{\underset{>}}{\overset{>}}{\overset{>}}{\overset{>}}{\overset{>}}{\underset{>}}{\overset{>}}{\overset{>}}{\overset{>}}{\underset{>}}{\overset{>}}{\overset{>}}{\overset{>}}{\overset{>}}{\overset{>}}{\overset{>}}{\overset{>}}{\overset{>}}{\overset{>}}{\overset{>}}{\overset{>}}{\overset{>}}{\overset{>}}{\overset{>}}{\overset{>}}{\overset{>}{\overset{>}}$$

$$R_{a} = \frac{(3)(1) + (1)(1.5) + (1.5)(3)}{1.5} = \frac{9}{1.5} = 6\Omega$$

$$R_c = \frac{9}{1} = 9 \Omega$$

Replace the wye with its delta equivalent and simplify.

We get

$$R_{eq3} = 12 // 6 = 4 \Omega$$

$$R_{eq4} = 3 // 6 = 2 \Omega$$

Re-draw the network and simplify further.

$$R_{eq5} = 4 + 2 = 6\Omega$$

 R_{eq5} is in parallel with the 9Ω -resistor.

$$R_{eq6} = 9//6 = 3.6 \Omega$$

Finally, we get

$$R_{AB} = 4 + 3.6 + 2 = 9.6\Omega$$

Department of Electrical and Electronics Engineering

EEE 33 - p10

Voltage and Current Division

Voltage Division

Consider n resistors that are connected in series

The voltage across any resistor R_i is

$$V_i = R_i I = \frac{R_i}{R_1 + R_2 + ... + R_n} V$$
 $i=1,2,...n$

Voltage and Current Division

Current Division

Consider n resistors that are connected in parallel

The current I, through any resistor R, is

$$I_{i} = \frac{1}{1} R_{i}$$
 where $I_{i} = \frac{1}{1} R_{1} + \frac{1}{1} R_{2} + \dots + \frac{1}{1} R_{n}$ $i = 1, 2, \dots n$

Special Case Two resistors in parallel:
$$I_1 = \frac{R_2}{R_1 + R_2}I$$
 and $I_2 = \frac{R_1}{R_1 + R_2}I$

Example: A transistor amplifier (shown with its equivalent circuit) is used as a stereo pre-amplifier for a 2mV source. Find the output voltage V_o if $g_m = 30 \text{mA/V}$.

Voltage division at the input

$$V = \frac{2000}{2000 + 500} 2 \text{mV} \longrightarrow V = 1.6 \text{ mV}$$

Current Source =
$$g_mV = (30 \times 10^{-3})(1.6 \times 10^{-3})$$

$$= 48 \mu A$$

Current division to determine the current I_o through the $10k\Omega$ resistor

$$I_{o} = \frac{75k\Omega}{75k\Omega + 10k\Omega} 48\mu A \longrightarrow I_{o} = 42.353 \mu A$$

Finally, from Ohm's Law

$$V_o = -(42.353 \times 10^{-6})(10 \times 10^3)$$

$$= -423.529 \text{ mV}$$

Source Transformation

If the two networks are equivalent with respect to terminals ab, then V and I must be identical for both networks. Thus

$$V_s = RI_s$$
 or $I_s = \frac{V_s}{R}$

Example: The Operational Amplifier

Operational Amplifier Model

- Inverting Terminal V.
- Non-inverting Terminal V₊
- Input Resistance R_{in}
- Output resistance R_{ut}
- Open Loop Gain A₀₁
 - Of order 10³ to 10⁵
- Differential Input Veltage V
- Supply power
 - **V**_{cc} and −**V**_{cc}
- Output

$$\bullet Vo = A_{ol}E_{d} - R_{out}I_{out}$$

Ideal Op-Amp Assumptions

Input and Output Resistances

•
$$R_{in} = \infty$$
 \rightarrow $i_{B+} = i_{B-} = 0$

$$ightharpoonup$$
 $ightharpoonup$ $ightharpoonup$ $ightharpoonup$ $ightharpoonup$

• Open Loop Gain $A_{0l} = \infty$ Ed = 0

• Ed =
$$(V_{+} - V_{.}) = 0$$

$$-V_{SAT} < V_o < V_{SAT}$$

Buffer / Voltage Follower

KVL at V_s - R_s - E_d - R_L loop, + V_s - V_{Rs} - E_d - V_o = 0

Novoltagedropat R_s since $I_{B+} = 0$;

$$+V_s - \theta - \theta - V_o = \theta$$

$$V_o = V_s$$

This circuitminimize's loadingeffect' in = 0

 $i_{B+} = 0$ $V_{+} = V_{S}$

EEE 33 - p18

Inverting Amplifier

Novoltagedropat $R_2, V_+ = 0$ and $V_- = 0$

$$I_{1} = \frac{(V_{s} - V_{-})}{R_{1}} = \frac{(V_{s} - 0)}{R_{1}} = \frac{V_{s}}{R_{1}}$$

$$I_1 = I_f + i_{b+} = I_f + 0$$

$$I_1 = I_f = \frac{V_s}{R_t}$$

KVL at R_2 - E_d - R_f - R_L loop,

$$0 - 0 - V_f - V_o = 0$$

$$V_o = -R_f I_f = -R_f \left(\frac{V_s}{R_I} \right)$$

$$V_o = -\left(\frac{R_f}{R_I}\right)V_s$$

ClosedloopGain:

$$A_{CL} = -\frac{R_f}{R_I}$$

Nodal Analysis

General Procedure

- 1. Label all nodes in the circuit. Arbitrarily select any node as reference.
- 2. Define a voltage variable from every remaining node to the reference. These voltage variables must be defined as voltage rises with respect to the reference node.
- 3. Write a KCL equation for every node except the reference.
- 4. Solve the resulting system of equations.

Example: Find the voltage V_x using nodal analysis.

For node \mathbf{a} , the voltage of the node is dictated by the voltage source. Thus, $V_a = 4.8$ Volts.

The KCL equations for nodes **b** and **c** are

node **b**:
$$0 = \frac{V_b - 4.8}{30} + \frac{V_b}{15} + \frac{V_b - V_c}{10}$$

node **c**:
$$0.2 = \frac{V_c - V_b}{10} + \frac{V_c - 4.8}{40} + \frac{V_c}{20}$$

Solving simultaneously, we get

$$V_{b} = 2.4V$$
 $V_{c} = 3.2V$

Finally, we get the voltage V_{x}

$$V_{x} = 4.8 - V_{b} = 2.4V$$

Example: Find the voltages V_a , V_b and V_c using nodal analysis (a voltage source between 2 nodes).

The KCL equations for node a and the supernode

node a:
$$3 = \frac{V_a - V_b}{6} + \frac{V_a - V_c}{8}$$

supernode:
$$5 = \frac{V_b}{3} + \frac{V_c}{4} + \frac{V_b - V_a}{6} + \frac{V_c - V_a}{8}$$

For the voltage source, we get $V_b - V_c = 6$ volts.

The equations can be simplified into

$$72 = 7V_a - 4V_b - 3V_c$$

$$6 = V_{b} - V_{c}$$

$$120 = -7V_a + 12V_b + 9V_c$$

Solving simultaneously, we get

$$V_{a} = 24 \text{ V}$$

$$V_a = 24 \text{ V}$$
 $V_b = 16.3 \text{ V}$

$$V_{c} = 10.3 \text{ V}$$

Example: Find the voltages V_a , V_b and V_c using nodal analysis (dependent voltage source between two nodes).

The KCL equations for node a and the supernode

node **a**:
$$3 = \frac{V_a - V_b}{6} + \frac{V_a - V_c}{8}$$

supernode:
$$5 = \frac{V_b}{3} + \frac{V_c}{4} + \frac{V_b - V_a}{6} + \frac{V_c - V_a}{8}$$

For the dependent voltage source, we get

$$V_{c} - V_{b} = 2V_{x} = 2(V_{a} - V_{c})$$

The equations can be simplified into

$$72 = 7V_a - 4V_b - 3V_c$$

$$0 = -2V_a - V_b + 3V_c$$

$$120 = -7V_a + 12V_b + 9V_c$$

Solving simultaneously, we get

$$V_{a} = 24 \text{ V}$$

$$V_a = 24 \text{ V}$$
 $V_b = 9.6 \text{ V}$

$$V_{c} = 19.2 \text{ V}$$

Mesh Analysis

General Procedure

- 1. Count the number of "window panes" in the circuit. Assign a mesh current to each window
- pane.
 2. Write a KVL equation for every mesh whose current is unknown.
- 3. Solve the resulting equations.
- Mesh a loop that does not contain an inner loop.

Example: Find the voltage V_x using mesh analysis.

The KVL equations for meshes 1 and 2 are

Mesh 1:
$$-2 = 40(I_1 - I_2) + 16I_1$$

Mesh 2:
$$5 = 40I_2 + 40(I_2 - I_1) + 20(I_2 - I_3)$$

In mesh 3, the current source dictates the value of the mesh current. Thus, $I_3=1$ A.

The two equations can be simplified into

$$-2 = 56I_1 - 40I_2$$

$$25 = -40I_1 + 100I_2$$

Solving simultaneously, we get

$$I_1 = 0.2A$$

$$I_2 = 0.33A$$

Finally, we get the voltage V_{x}

$$V_x = 40(I_2 - I_1) = 5.2V$$

Example: Find the currents I_1 , I_2 and I_3 using mesh analysis (current source between two meshes). 36V

We cannot write a KVL equation for mesh 1 or for mesh 3 because of the current source. Form a **supermesh** and write a KVL equation for it.

supermesh:
$$36 = 1(I_1 - I_2) + 3(I_3 - I_2) + 2I_3 + 4I_1$$

The KVL equation for mesh 2 is unchanged.

$$-5 = 5I_2 + 3($$

The third equation is dictated by the current source.

$$I_1 - I_3 = 3 A$$

Solving simultaneously, we get

$$I_1 = 5.45 \text{ A}$$
 $I_2 = 0.86 \text{ A}$ $I_3 = 2.45 \text{ A}$

Example: Find the currents I_1 , I_2 and I_3 using

mesh analysis (dependent source included).

The current in mesh 1 is dictated by the current source. Thus, $I_1=15$ Amps.

The KVL equation for mesh 2 is

$$0 = 2I_2 + 3(I_2 - I_3) + 1(I_2 - I_1)$$

We cannot write a KVL equation for mesh 3. Can't form a supermesh either. However, we can write an equation for the dependent source.

$$I_3 - I_1 = \frac{1}{9} v_x = \frac{1}{9} [3 (I_3 - I_2)]$$

Solving simultaneously, we get

$$I_1 = 15 A$$

$$I_2 = 11 A$$

$$I_3 = 17 A$$

Choice of Method

Given the choice, which method should be used? Nodal analysis or mesh analysis?

Nodal analysis: The number of voltage variables equals number of nodes minus one. Every voltage source connected to the reference node reduces the number of unknowns by one.

Mesh Analysis: The number of current variables equals the number of meshes. Every current source in a mesh reduces the number of unknowns by one.

Note: Choose the method with less unknowns.

Example: Write the nodal and mesh equations that describe the circuit shown.

The nodal equations are

node a:
$$3 = \frac{V_a}{2} + \frac{V_a - V_b}{4}$$

node b:
$$-4 = \frac{V_b - V_a}{4} + \frac{V_b}{5} + \frac{V_b - V_c}{6} + \frac{V_b - V_d}{10}$$

 10Ω

node c:
$$4 = \frac{V_c - V_b}{6} + \frac{V_c - V_d}{8}$$

node d:
$$-5 = \frac{V_d - V_b}{10} + \frac{V_d - V_c}{8}$$

There are 5 meshes but the 3A and 5A current sources flow in distinct meshes. We need to define 3 current variables.

The mesh equations are

mesh 1:
$$0 = 2(I_1 - 3) + 4I_1 + 5(I_1 - 5)$$

supermesh:
$$0 = 6(I_2 - 5) + 10I_3 + 8(I_3 - 5)$$

4A source:
$$4 = I_2 - I_3$$

Note: We need either three current variables or four voltage variables to describe the circuit. It is preferable to use mesh analysis.

Ladder Method

Applicable for "ladder-type" networks only.

Procedure:

- 1. Define a current or voltage variable for the element that is farthest from the source.
- 2. Use KVL and KCL successively to express all network currents and voltages in terms of the chosen variable.

Example: Find all currents in the circuit shown.

Note: All currents and voltages will be expressed in terms of the defined current variable I.

From KVL
$$V_{bd} = (4 + 12)I = 16I$$
 From Ohm's Law
$$I_{d} = \frac{V_{bd}}{16} = I$$

From KCL
$$I_b = I_d + I = 2I$$

From KVL
$$V_{ac} = 3I_b + V_{bd} + 1I_b = 24I$$

From Ohm's Law
$$I_c = \frac{V_{ac}}{6} = 4I$$

From KCL
$$I_a = I_c + I_b = 6I$$

From KVL
$$48 = 5I_a + V_{ac} + 3I_a = 72I$$

which gives
$$I = \frac{2}{3}A$$

Note: Since I is now known, any current or voltage in the circuit can now be computed.

For example, the other currents are

$$I_a = 6I = 4 A$$
 $I_c = 4I = \frac{8}{3} A$

$$I_b = 2I = \frac{4}{3} A$$
 $I_d = I = \frac{2}{3} A$

Another way of solving the problem is to simply assume a value for the current I. Then, the assumed value is scaled to conform with the given magnitude of the source. This is possible since the resistive network is linear.

Assume I=1A. Then, proceeding as before, we get

$$V_{bd} = (4 + 12)I = 16 V$$

From Ohm's Law
$$I_d = \frac{V_{bd}}{16} = 1 A$$

$$I_b = I_d + I = 2 A$$

$$V_{ac} = 3I_b + V_{bd} + 1I_b = 24 V$$

From Ohm's Law
$$I_c = \frac{V_{ac}}{6} = 4 \text{ A}$$

From KCL
$$I_a = I_c + I_b = 6 A$$

From KVL
$$48 = 5I_a + V_{ac} + 3I_a = 72 \text{ V}$$

Since the actual source is 48 V and not 72 V, all currents and voltages must be scaled down by a factor equal to 48/72, or 2/3.

Example: Use the ladder method to find all currents.

Equate the expressions for V_{bd} .

$$9I_y = 18I_x$$

or

$$I_y = 2I_x$$

KVL for the source

$$54 = 1(I_2 + I_4) + V_{bd}$$

$$=3I_x + 3I_y + 18I_x = 27I_x$$

We get

$$I_x = 2 A$$

$$I_y = 4 A$$

