

EEE 33 HW #7

Due: Friday, September 23, 2011 5:00 PM

Problem #1:

- 1. Find $G(j\omega) = V_o(j\omega)/V_i(j\omega)$.
- 2. What is the highest possible gain $|G(j\omega)|$? At what frequency does this occur?
- 3. What is the lowest possible gain $|G(j\omega)|$? At what frequency does this occur?
- 4. What type of filter is this? Find the cut-off frequency (f_c , in Hz) and the gain at this cut-off frequency $|G(j\omega_c)|$.
- 5. Draw the magnitude $|G(j\omega_c)|$ vs frequency ω plot for this circuit.
- 6. Find the output phasor output $V_o(j\omega)$ and the time-domain output $V_o(t)$ if $V_i(t) = 100 + 100\cos(1x10^3t) + 100\cos(10x10^3t) + 100\cos(100x10^3t) + 100\cos(1x10^6t)$ Volts

- 1. Draw the equivalent circuit of the network above when $\,\omega$ approaches zero. From this equivalent circuit, determine V_{σ} .
- 2. Draw the equivalent circuit of the network above when $\,\omega$ approaches infinity. From this equivalent circuit, determine V_{o} .
- 3. Express $V_c(j\omega)$ as a function of $V_i(j\omega)$.
- 4. Express $V_o(j\omega)$ as a function of $V_c(j\omega)$.
- 5. Find $G(j\omega) = V_o(j\omega)/V_i(j\omega)$.
- 6. What is the highest possible gain $|G(j\omega)|$? At what frequency does this occur?
- 7. What is the lowest possible gain $|G(j\omega)|$? At what frequency does this occur?
- 8. What type of filter is this? Find the cut-off frequency (f_c , in Hz) and the gain at this cut-off frequency $|G(j\omega_c)|$?
- 9. If $R_1 = R_2 = R_3 = 10 k\Omega$, find the value of R_4 and C such that the maximum possible gain at the passband is 10, and the cut-off frequency is $f_c = 500$ Hz.
- 10. Given the values in #9 above, what is the value of the gain at the cut-off frequency?