EEE 33 first semester AY2011-2012 : Homework 3 1. The switch in the circuit below has been at position B for a long time. At time $t = 0, 2T, 4T, \ldots$, the switch moves to position A where T is some time interval. At time $t = T, 3T, 5T, \ldots$, the switch moves to position B. - a. Determine and plot $v_C(t)$ for $0 < t \le T$. What are $v_C(T^-)$ and $v_C(T^+)$? b. Determine and plot $v_C(t)$ for $T < t \le 2T$. What are $v_C(2T^-)$ and $v_C(2T^+)$? - c. Determine $v_C(3T)$, $v_C(4T)$, and $v_C(5T)$. - d. Determine a general form for $v_C(kT)$ where k is an odd integer. - 2. Given that for |x| < 1, $$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$$ - a. For large k in part 1(d), use the above identity to write a simple expression for $v_C(kT)$. - b. If RC = 100T, show that $v_C(kT) \approx V_s/2$ for large k. - 3. The switch in the circuit below has been closed for a long time. At time t = 0, the switch is opened. Given that $R_{bat} = 4 \Omega$, $R_{coil} = 2 \Omega$, and $R = 10 k\Omega$, - a. What are $i_{coil}(0^-)$, $i_{coil}(0^+)$, $v_R(0^-)$ and $v_R(0^+)$? - b. Determine $i_{coil}(t)$ and $v_R(t)$ for $t \geq 0$. - c. Plot $i_{coil}(t)$ and $v_R(t)$ for $t \geq 0$. - 4. For problem 3, determine the value of L_{coil} such that $v_R(1 \ ms) = 0.5v_R(0^+)$. Show your solution. Plot $v_R(t)$.