EEE 31 Problem Set 1

Problem 1

Given the circuit in Fgure 1.

- a. Find the equivalent resistance, $R_{\text{eq}}\text{,}$ seen terminals A and B.
- b. If a 5V supply is connected at terminals A and B (V_{AB} = 5V), find V_{CD} and V_{EF} .

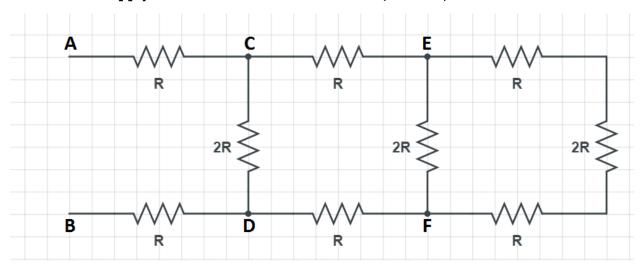


Fig.1

Problem 2

Given the circuit in Figure 2.

- a. Express V_4 in terms of V_5 and the resistors.
- b. If $i_2=1A$, and $R_1=R_2=R_3=R_4=R_5=10~\Omega$, find the value of V_4 and V_5 .

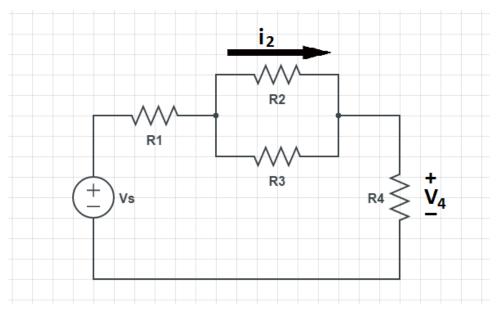
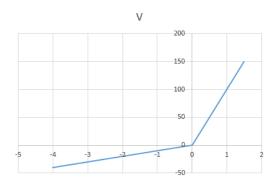



Fig. 2

Problem 3

A certain device has a V-I characteristics (Y-axis: Voltage, X-axis: Current) shown in Figure 3a. If a voltage shown in Figure 3b is applied to the device,

- a. Plot the current vs time of the device for $0 \le t \le 5$ s
- b. Calculate the total energy absorbed by the device from 0 to 5s.

V(t)

15

10

5

0

1 2 3 4 5

-10

-15

Fig. 3a

Fig. 3b

Problem 4

Given the circuit in Figure 4

- a. Find all the mesh currents $i_\text{A},\,i_\text{B},\,\text{and}\,\,i_\text{C}$
- b. Compute the power absorbed by all resistors.

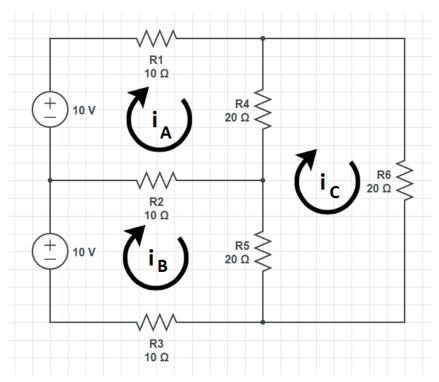


Fig. 4

Problem 5

Given the circuit in Figure 5, use node voltage analysis to get the voltages across all resistors.

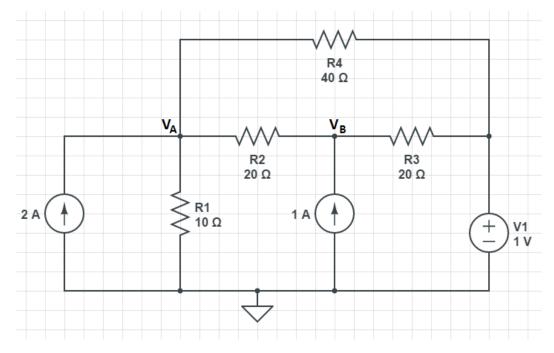


Fig. 5

Problem 6

Given the resistance network in Figure 6

- a. Find the equivalent resistance across A and B in terms of R.
- b. What value of R will result with an equivalent resistance of $10 k\Omega$

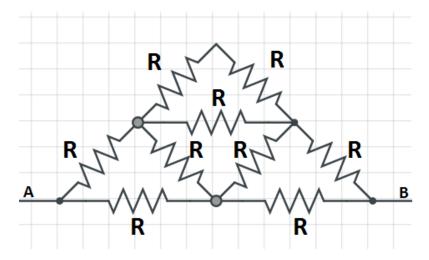


Fig. 6

Problem 7

Figure 7 shows a cube resistor. Assume that all resistors have a resistance of R.

- a. If a voltage V_S is applied across A and G ($V_S = V_{AG}$), what is the voltage V_B , V_C , V_D , V_E and V_F ? Use G as the reference node ($V_G = 0$). Express your answers in terms of R and V_S . (Hint: Use the cube's symmetry.)
- b. Find the value of R such that the equivalent resistance is $10k\Omega$.

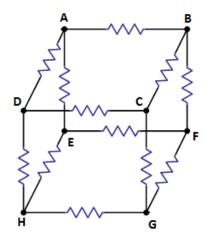


Fig. 7

Problem 8

Use mesh analysis to solve the circuit in Figure 8.

- a. Write down the mesh current equations for loops 3 and 4.
- b. Express i_1 in terms of i_2 .
- c. Find the value of all mesh currents.
- d. Find the value of Vx.

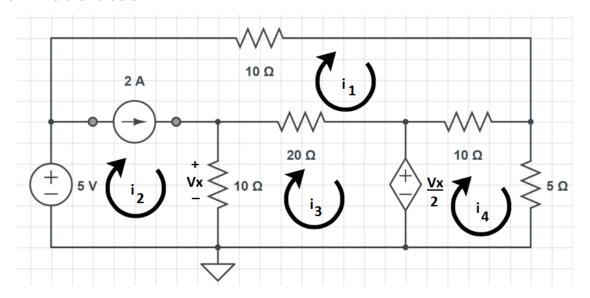


Fig. 8