Today's EEE 151 Lecture

- Review what is gain margin.
- Look at phase margin.
- Remarks about gain margin and phase margin.
- Put it all together.

Nyquist Diagrams

©2003 M.C. Ramos UP EEE Institute

Phase Margin

• Consider the system with the following Nyquist plots for different values of k.

There is no k that will make the Nyquist plot cross or touch the point -1 + j0.

$$\Rightarrow GM = \infty.$$

• Will systems such as the one above always be stable? Theoretically? Practically?

 \bullet Gain margin: what k will make the system unstable?

What k do we need to 'grow' the original Nyquist plot (k = 1) such that it is large enough to touch or cross the point -1 + j0?

$$\Rightarrow GM = 13.26 dB.$$

Nyquist Diagrams EEE 151

Phase Margin

• Investigate the effect of time delay and phase shift.

Phase margin $\stackrel{\triangle}{=}$ amount of additional phase shift to make the system unstable (expressed in degrees).

• The phase margin is usually measured at unity open-loop gain. Why?

Phase Margin

• Example. Find the phase margin for closed-loop system with the open-loop TF

$$G(s) = \frac{1}{s + 0.5}$$

• Pole of G(s) is at s = -0.5 (LHP). Pole of $1 + [1\angle \theta]G(s)$ is also in the LHP. $\Rightarrow P = 0$.

For stability, there should be no closed-loop poles in the RHP, i.e., no zeros of $1 + [1\angle\theta]G(s)$ in the RHP. $\Rightarrow Z = 0$.

Nyquist Diagrams

©2003 M.C. Ramos UP EEE Institute

Phase Margin

• What θ will make the system unstable?

Nyquist plots for different values of θ . Notice at $\theta = 115^{\circ}$, the plot almost encircles the point -1 + j0.

A little more phase shift and the system will be unstable.

 \rightarrow determine what θ will make the system unstable.

Phase Margin

• Thus, from the Principle of the Argument, N = Z - P = 0.

Therefore for stability, there should be no encirclements of -1 + j0.

• Looking at the Nyquist plot for $\theta = 0$.

There are no encirclements of -1 + j0.

Thus, the system is stable for $\theta = 0$.

Nyquist Diagrams EEE 151

Nyquist Diagrams

EEE 151

©2003 M.C. Ramos UP EEE Institute

Phase Margin

• Notice that $\theta > 0$ rotates the Nyquist plot counterclockwise about the origin.

The phase shift does not affect the size of the plot.

- To find θ that will make the system unstable, find angle θ such that the Nyquist plot touches -1 + j0.
- Since the Nyquist plot is basically the plot of $G(j\omega)$ on the complex plane, find θ such that the plot of $[1\angle\theta]G(j\omega)$ crosses -1+j0 at some ω .

• The point on the Nyquist plot which has unity magnitude will touch the point -1 + j0.

Find ω such that

$$|G(j\omega)| = 1.$$

$$G(j\omega) = rac{1}{j\omega + 0.5}$$

$$|G(j\omega)| = \frac{1}{\sqrt{\omega^2 + 0.5^2}}$$

$$|G(j\omega)| = 1$$

 $\Rightarrow \omega = \pm \sqrt{0.75}.$

Nyquist Diagrams EEE 151 ©2003 M.C. Ramos UP EEE Institute

Phase Margin

• Can we add positive phase?

Not possible in the real world. Physical systems are causal.

- \Rightarrow we only need to consider negative phase shift.
- \Rightarrow rotate the Nyquist plot clockwise.
- Therefore, the phase margin is

$$\theta = -180^{o} - \phi(+\sqrt{0.75}) = -120^{0}$$

$$PM = |\theta| = 120^{\circ}$$

• Let us look at the two solutions.

$$\phi(+\sqrt{0.75}) = \angle G(+j\sqrt{0.75}) = -60^{o}$$

$$\phi(-\sqrt{0.75}) = \angle G(-j\sqrt{0.75}) = +60^{o}$$

We now just need to figure out how much phase to add such that the unity magnitude point on the Nyquist plot swings to the point -1 + j0.

Nyquist Diagrams EEE 151 ©2003 M.C. Ramos UP EEE Institute

Phase Margin

• Where does the phase shift come from? Consider the effect of a 0.5 ms delay on two signals.

phase shift $= -180^{\circ}$

phase shift = -36

- The effect of time delay is more apparent in the higher frequency range.
- For some time delay T, the phase shift for a frequency ω can be determined based on the ratio of the time delay and the period of the sinusoid.

In the frequency domain, the time delay T corresponds to the transfer function

$$G_{TD}(s) = e^{-sT}$$
 $G_{TD}(j\omega) = e^{-j\omega T} = 1 \angle (-\omega T)$

Nyquist Diagrams EEE 151 ©2003 M.C. Ramos UP EEE Institute

Remarks on Gain and Phase Margins

• The GM and PM can be graphically determined.

$$GM = 20 \log \left(\frac{1}{0.22}\right)$$
$$= -20 \log(0.22)$$
$$= 13.15 \ dB$$

$$PM = 180^{o} - 80^{o}$$
$$= 100^{o}$$

$$\omega_{GM} = 5.48 \; rad/s$$
 $\omega_{PM} = 1.85 \; rad/s$

- Phase margin from Bode plots?
- Find ω_{PM} such that $|G(j\omega_{PM})| = 0 \ dB$.
- ullet Then, phase margin is $PM = -180^o \angle G(j\omega_{PM})$

Nyquist Diagrams EEE 151 ©2003 M.C. Ramos UP EEE Institute

Remarks on Gain and Phase Margins

- Gain margin and phase margin checks are a subset of the Nyquist stability check.
- ⇒ satisfying the gain margin and phase margin requirements may not necessarily lead to a stable system.
- ⇒ gain margin and phase margin checks can be used to give an idea on how tolerant the system is to additional gain and additional phase shift.
- Example. Add 12 dB gain and -90^{o} phase shift to the previous system. Is it still stable?

Remarks on Gain and Phase Margins

- How do you determine the gain and phase margins from Bode plots?
- Relevant Octave commands.

```
>> nyquist(tf(50, [1 9 30 40]))
>> [Gm, Pm, Wcg, Wcp] = margin(tf(50, [1 9 30 40]))

Gm = 4.6000
Pm = 100.6620
Wcg = 5.4772
Wcp = 1.8484
```

Nyquist Diagrams EEE 151

Putting It All Together

- Modeling.
 - -differential equations and Laplace transforms.
 - -block diagrams and SFGs.
- Control architecture. Closed-loop feedback system.
- Tools.

©2003 M.C. Ramos

UP EEE Institute

- -characteristic equation.
- -Routh-Hurwitz and stability.
- -root locus.
- -Bode plots.
- -Nyquist stability criterion.

Control Systems Theory ©2003 M.C. Ramos EEE 151 UP EEE Institute