• Identifying transfer functions.

Why use Bode plots to identify transfer functions?

- Some performance parameters.
- Compensation techniques.
- Interpreting Bode plots.
 - -low frequency response.
 - -high frequency response.

Bode Plots EEE 151

©2003 M.C. Ramos UP EEE Institute

- **Identifying Transfer Functions**
- Frequency response method.
 - -apply a sinusoidal input and sweep the frequency ω from low frequencies to high frequencies.
 - -plot the logarithmic gain and phase plots.
 - -identify system type, gain, poles and zeros.
 - determine the transfer function.
- Considerations on what method to use.
 - -accuracy of identification.
 - -system response (fast or slow) of the plant.

• How do we identify the transfer function for unknown systems?

Identifying Transfer Functions

- -step (time domain) response.
- -frequency response (Bode plots).
- Step response method.
 - apply a unit step at the input.
 - -measure rise time, delay time, steady-state output and other time domain parameters.
 - -infer the transfer function from the measurements.

Bode Plots EEE 151

©2003 M.C. Ramos UP EEE Institute

UP EEE Institute

Identifying Transfer Functions

• Recall the example comparing

Bode Plots EEE 151

• Thus, may not be able to accurately determine the transfer function $G_2(s)$ from its step response.

Given the step response of $G_2(s)$, one might incorrectly identify the TF as that of $G_1(s)$.

• Controller designed for $G_1(s)$ may not necessarily work for $G_2(s)$. Consider

• If we use the frequency response to identify the TF, cannot mistake $G_1(s)$ and $G_2(s)$ for the other.

Compare the slopes of the magnitude plot and the asymptotic values of the phase angles for large ω .

• Root loci of $G_1(s)$ and $G_2(s)$.

Performance Parameters

• Effect on the steady-state error, e_{ss} for a unit step input.

Bode Plots

EEE 151

Bode Plots EEE 151 • Assuming G(0) > 0, increasing G(0) decreases the steady-state error.

• From the Bode plots, the logarithmic gain at $\omega = 0$ is

 $[20 \log |G(j\omega)|]_{\omega=0} = 20 \log |G(0)|$

For a system of type 0, $20 \log |G(j0)|$ corresponds to the horizontal asymptote at low frequencies.

 \Rightarrow to decrease the steady-state error e_{ss} , move the low frequency horizontal asymptote upwards.

Bode Plots EEE 151 ©2003 M.C. Ramos UP EEE Institute

Phase-lead and Phase-lag Networks

- Consider $G(s) = \frac{k}{s n}$.
- To move the location of the corner frequency,
 - introduce a zero at location z_c such that $z_c = p.$
 - add the necessary pole at location p_c to achieved the desired response.

-add gain.

Bode Plots EEE 151

- Effect on the rise time. Recall for the first order system $G(s) = \frac{a}{s+a}$, the rise time T_r is approximately given by $T_r = \frac{2.2}{a}$
- From the Bode plots of a pole on the real axis, |p| = |-a| is the corner frequency.
- Thus, to decrease the rise time (faster system response), increase a. Move the corner frequency |p| to the right.

```
Bode Plots
EEE 151
```

©2003 M.C. Ramos UP EEE Institute

Phase-lead and Phase-lag Networks

• Use the controller $G_c(s)$.

• Phase-lead and phase-lag controller.

$$G_c(s) = k_c rac{s - z_c}{s - p_c}$$

 $ext{phase-lead}: |z_c| \ll |p_c| \ ext{phase-lag}: |p_c| \ll |z_c|$

- Design considerations (for phase-lead controller).
 - $-z_c$ is located at the pole location of the original TF.
 - $-p_c$ is determined based on performance specifications. $-k_c$ is computed such that there is no upward shift in
 - the magnitude plot, i.e., $G(0) \cdot G_c(0) = G(0)$.

Bode Plots EEE 151

Phase-lead and Phase-lag Networks

• Phase-lag controller Bode plots.

• Phase-lead controller Bode plots.

Interpreting Bode Plots : Low Frequency

- \bullet Effect of gain factor is constant at all frequencies.
 - -magnitude plot : $20 \log |k|$
 - -phase plot : 0^o for k > 0 or -180^o for k < 0
- Slope of magnitude plot depends on integral and derivative factors.

Let N be the difference in the number of poles and the number of zeros at the origin.

- -magnitude plot : slope = $-20N \ dB/dec$
- phase plot : asymptote = -90N degrees

©2003 M.C. Ramos

UP EEE Institute

Bode Plots EEE 151 • Steady-state error. Represent the value of the magnitude plot at w = 1 rad/s as M. $-\,{
m type}\,\,0:\,20\log|k_p|\ =\ M\ \Rightarrow\ k_p\ =\ 10^{M/20}$ $e_{ss} = \frac{1}{1 + k_n}$ for a unit step input $- ext{type 1}: 20 \log |k_v| = M \Rightarrow k_v = 10^{M/20}$ $e_{ss} = \frac{1}{k_{ss}}$ for a ramp input $- ext{type } 2: \ 20 \log |k_a| \ = \ M \ \Rightarrow \ k_a \ = \ 10^{M/20}$ $e_{ss} = \frac{1}{k_a}$ for a parabolic input Bode Plots EEE 151

©2003 M.C. Ramos UP EEE Institute

Summary of Today's Lecture

- Identifying transfer functions.
 - -using the step response.
 - -using Bode plots.
- Some performance parameters.
 - -steady-state error.
 - -rise time.
- Phase-lead / phase-lag compensation techniques.
- Interpreting Bode plots.

• Each pole eventually provides $-20 \ dB/dec$ magnitude slope and -90° phase shift.

Each zero eventually provides $20 \ dB/dec$ magnitude slope and 90° phase shift.

With n = number of poles and m = number of zeros,

-magnitude plot : slope = -20(n - m) dB/dec

-phase plot : asymptote = -90(n - m) degrees

• Difference in the number of poles and the number of zeros is related to the stability of the closed-loop system.

Bode Plots EEE 151

©2003 M.C. Ramos UP EEE Institute