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Today’s EEE 151 Lecture

• Identifying transfer functions.

Why use Bode plots to identify transfer functions?

• Some performance parameters.

•Compensation techniques.

• Interpreting Bode plots.

– low frequency response.

– high frequency response.
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Identifying Transfer Functions

•How do we identify the transfer function for unknown
systems?

– step (time domain) response.

– frequency response (Bode plots).

• Step response method.

– apply a unit step at the input.

–measure rise time, delay time, steady-state output and
other time domain parameters.

– infer the transfer function from the measurements.
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Identifying Transfer Functions

•Frequency response method.

– apply a sinusoidal input and sweep the frequency ω
from low frequencies to high frequencies.

– plot the logarithmic gain and phase plots.

– identify system type, gain, poles and zeros.

– determine the transfer function.

•Considerations on what method to use.

– accuracy of identification.

– system response (fast or slow) of the plant.
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Identifying Transfer Functions

•Recall the example comparing

G1(s) =
1

s2 + 0.6s + 1
and

G2(s) = G1(s)
9

s2 + 4.2s + 9

Not much difference in
the step responses of
G1(s) and G2(s).
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Identifying Transfer Functions

•Thus, may not be able to accurately determine the
transfer function G2(s) from its step response.

Given the step response of G2(s), one might incorrectly
identify the TF as that of G1(s).

•Controller designed for G1(s) may not necessarily work
for G2(s). Consider

R(s) Y (s)

E(s)
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Identifying Transfer Functions

•Root loci of G1(s) and G2(s).
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plant G1(s) : the system is stable for any gain k.
plant G2(s) : the system is unstable for gain k > 1.35.
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Identifying Transfer Functions

• If we use the frequency response to identify the TF,
cannot mistake G1(s) and G2(s) for the other.
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Compare the slopes of the magnitude plot and the
asymptotic values of the phase angles for large ω.
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Performance Parameters

•Effect on the steady-state error, ess for a unit step input.

R G

E

Y

+

-

E(s)

R(s)
=

1

1 + G(s)

For a step input : r(t) = u(t), then

ess = lim
s→0

s
1

1 + G(s)

1

s
=

1

1 + G(0)
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Performance Parameters

•Assuming G(0) > 0, increasing G(0) decreases the
steady-state error.

•From the Bode plots, the logarithmic gain at ω = 0 is

[20 log |G(jω)|]ω=0 = 20 log |G(0)|

For a system of type 0, 20 log |G(j0)| corresponds to the
horizontal asymptote at low frequencies.

⇒ to decrease the steady-state error ess, move the low
frequency horizontal asymptote upwards.
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Performance Parameters

•Effect on the rise time.
Recall for the first order system G(s) =

a

s + a
,

the rise time Tr is approximately given by Tr =
2.2

a

•From the Bode plots of a pole on the real axis,
|p| = | − a| is the corner frequency.

•Thus, to decrease the rise time (faster system response),
increase a. Move the corner frequency |p| to the right.
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Phase-lead and Phase-lag Networks

•Consider G(s) =
k

s − p
.

•To move the location of the corner frequency,

– introduce a zero at
location zc such that
zc = p.

– add the necessary pole
at location pc to
achieved the desired
response.

– add gain.

m
a
g
(d

B
)

ω (rad/s)

Magnitude Plot of G(s)

10

20

0

−10

−20

0.1|p| |p| 10|p| 100|p|

−20 dB/dec slope

Bode Plots

EEE 151

c©2003 M.C. Ramos

UP EEE Institute

EEE 151

Phase-lead and Phase-lag Networks

•Use the controller Gc(s).

r(t) y(t)G(s)Gc(s) Gc(s) = kc
s − zc

s − pc
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Phase-lead and Phase-lag Networks

•Phase-lead and phase-lag controller.

Gc(s) = kc
s − zc

s − pc

phase-lead : |zc| ≪ |pc|
phase-lag : |pc| ≪ |zc|

•Design considerations (for phase-lead controller).

– zc is located at the pole location of the original TF.

– pc is determined based on performance specifications.

– kc is computed such that there is no upward shift in
the magnitude plot, i.e., G(0) · Gc(0) = G(0).
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Phase-lead and Phase-lag Networks

•Phase-lead controller Bode plots.
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Phase-lead and Phase-lag Networks

•Phase-lag controller Bode plots.
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Interpreting Bode Plots : Low Frequency

•Effect of gain factor is constant at all frequencies.

–magnitude plot : 20 log |k|

– phase plot : 0o for k > 0 or −180o for k < 0

• Slope of magnitude plot depends on integral and
derivative factors.

Let N be the difference in the number of poles and the
number of zeros at the origin.

–magnitude plot : slope = −20N dB/dec

– phase plot : asymptote = −90N degrees
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Interpreting Bode Plots : Low Frequency

• Steady-state error. Represent the value of the
magnitude plot at w = 1 rad/s as M .

– type 0 : 20 log |kp| = M ⇒ kp = 10M/20

ess =
1

1 + kp
for a unit step input

– type 1 : 20 log |kv| = M ⇒ kv = 10M/20

ess =
1

kv
for a ramp input

– type 2 : 20 log |ka| = M ⇒ ka = 10M/20

ess =
1

ka
for a parabolic input
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Interpreting Bode Plots : High Frequency

•Each pole eventually provides −20 dB/dec magnitude
slope and −90o phase shift.

Each zero eventually provides 20 dB/dec magnitude
slope and 90o phase shift.

With n = number of poles and m = number of zeros,

–magnitude plot : slope = −20(n − m) dB/dec

– phase plot : asymptote = −90(n − m) degrees

•Difference in the number of poles and the number of
zeros is related to the stability of the closed-loop system.
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Summary of Today’s Lecture

• Identifying transfer functions.

– using the step response.

– using Bode plots.

• Some performance parameters.

– steady-state error.

– rise time.

•Phase-lead / phase-lag compensation techniques.

• Interpreting Bode plots.

Bode Plots

EEE 151

c©2003 M.C. Ramos

UP EEE Institute


