What Do We Have for Today?

e Continue investigating performance specifications.

e Time domain exercises for second-order systems.

e Characteristic equation.

e Dominant poles and design issues.
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Time Domain Exercises

Time Domain Exercises

e Vary the damping factor {. Step response of G(s).
>> roots([1 0.6 1])

Step Response

ans =
()
. E
~0.3000 + 0.9539i £
-0.3000 - 0.9539i g
>> step(1l, [1 0.6 11) -
time
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e Consider
1

s2 + 0.6s + 1

G(s) =

e : What is wy, (, wg and o? How do these parameters
affect the response?

e Octave and roots of a polynomial.
Example. Determine the roots of s2 + 0.6s + 1.

>> roots([1 0.6 1])
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Time Domain Exercises

e Increase the damping.

>> roots([1 1 1])

Step Response

ans =

-0.5000 + 0.86601
-0.5000 - 0.86601

amplitude

>> step(1, [1 1 11)

time
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Time Domain Exercises

e Overdamped.

>> roots([1 2.5 1])
ans =

-2.0000
-0.5000

>> step(1, [1 2.5 1])
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Time Domain Exercises

amplitude

Step Response

:
time
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e Increasing the natural frequency wy,.

>>wn = 1; z = 0.3;

>> step(wn~2, [1 2%z*wn wn~2])
>> hold

Current plot held

>> wn = 2;

>> step(wn~2, [1 2%z*wn wn~2])
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Step Response
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time
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Time Domain Exercises

e Negatively damped.
>> roots([1 -1 1])

Step Response

ans =
£
0.5000 + 0.86601 =F
0.5000 - 0.8660i g
>> step(l, [1 -1 1], 0:0.1:10) L
time
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Characteristic Equation

e Error equation.
1

Be) = e

e We have the same error equation for these two systems.

R(s) 4 E(s) Y(s) R(s) 4 E(s) Y (s)
P~

e Error equation and sensitivity function : £ = SR.
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Characteristic Equation

Characteristic Equation

e Poles of the transfer function from R(s) to E(s).

= roots or zeros of 1 + H(s)G(s).

e Characteristic equation : 1 + H(s)G(s) = 0.

e Example.

e Error equation and characteristic equation.
E(s) s2 4+ 0.6s + 1
R(s)  s2 + 0.6s + 2
1 + H(s)G(s) = 0 =

s2 4+ 0.6s + 2 =0

roots without feedback : s = — 0.3 £ 50.9539
roots with feedback : s = — 0.3 &+ 51.3820

1
G(s) = H(s 1
(s) s2 &+ 0.6s + 1’ (s) e Therefore, feedback
—modifies system behavior.
—moves the location of the poles.
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Dominant Poles Dominant Poles
e Location of poles on the s-plane. e In some cases, we need to worry only about dominant
poles and ignore non-dominant poles.
imag
X
X
real e Example. Compare the response of
x 1
g “ils) = 3 06s £ 1
NI - :
non-dominant dominant and
poles poles
Ga(s) = Gils) g
2\8) = 1S
s2 + 4258 + 9

—dominant poles : decay slowly.

—non-dominant poles : decay quickly.
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Dominant Poles

Dominant Poles

e Step responses.

> nl =1; d1 = [1 0.6 1]; Step(nl, d1)
>> [n2, d2] = series(nl, d1, 9, [1 4.2 9]);
>> step(n2, d2)

Step Response

Q
<
5
h=1
= Gi(s)
&
Ga(s)
time
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Dominant Poles

e What happens if you ignore ’insignificant poles?’

Suppose the actual plant model is G(s) = Ga(s).
However, in designing the control, non-dominant poles
where ignored, i.e., we use G(s) = Gi(s).

® Design the feedback system.

E(s
+ ()

R(s) T E = 12 G(s) Y (s)
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Dominant Poles

e Step response of the paper design with the plant G(s).

>> [ncl, dcl] = cloop(12*nl, d1, -1);
>> step(necl, dcl)

Step Response

amplitude

w
time

= We have a stable system.
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e Check using the actual plant model, G(s).

>> [nc2, dc2] = cloop(12*n2, d2, -1);
>> step(nc2, dc2, [0:0.1:4])

Step Response

amplitude

O
time

= The system is unstable.

Performance Specifications (©2002 M.C. Ramos
EEE 151 UP EEE Institute



Dominant Poles

e The step responses of low-order systems and high-order
systems may be similar.

e Good thing. This can simplify the determination of the
step response of a high-order system.

Inspect the T, T4, natural frequency, etc.

There is ’little’ difference between the step responses of
the second-order system G1(s) and the fourth-order
system Ga(s).
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Summary

Dominant Poles

e Varying ¢ and w,, varies the response of a second-order
system.

e Characteristic equation, and how it describes a system.

e Dominant poles. Making the right choice.
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e Not so good thing. This can lead to incorrectly
identifying the system order, and the system model.

Inspect the T, T4, natural frequency, etc.

In designing a control system for Ga(s), one may
incorrectly model the system as G1(s), and thus lead to
a poorly designed controller.

e An accurate model is important in control systems
design.
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