EEE 101 AY2001-2002: Third Exam Sample Problems

1. Given the following Bode plot

a. Determine the form of the transfer function. Your answer must be in the following form.

$$G(s) = k \frac{\prod_{i=1}^{m} (s - z_i)^{r_i}}{\prod_{j=1}^{n} (s - p_j)^{q_j}}$$

- b. Determine the numerical values of the constants in your transfer function. Write out the transfer function with the numerical values for the constants.
- 2. What are gain and phase margins of the system in question one?
- 3. Bode plots.
- a. Draw the magnitude and phase plots of

$$G(s) = \frac{1}{(s+a)^n}$$

for n=1,2,3. Label all relevant features of the graph, e.g. corner frequencies and asymptotes.

b. The following is the general form of the transfer function of a phase-lead/phase-lag controller where z and p are negative real numbers.

$$G_c(s) = k \frac{s-z}{s-p}$$

Draw the magnitude and phase plots of $G_c(s)$ for $|z| \ll |p|$ and for $G_c(s)$ for $|p| \ll |z|$. Which plots are for a phase-lead controller and which ones are for a phase-lag controller. Justify.

3. Given the closed-loop unity feedback system with the following open-loop transfer function G(s).

$$G(s) = \frac{50}{s^3 + 9s^2 + 30s + 40}$$

The Nyquist plot of the open-loop transfer function G(s) is

- a. Determine the stability of the closed-loop system using Nyquist criterion.
- b. Analytically determine the gain and phase margins of the system.