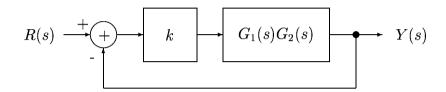
EEE 101 AY2001-2002 : Second Exam Sample Problems

1. Given

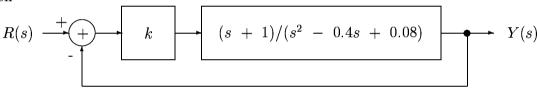
$$G_1(s) = \frac{A_1}{s+a}, \qquad G_2(s) = \frac{A_2}{s^2 + 2\zeta\omega_n s + w_n^2}, \qquad a, \zeta, \omega_n > 0$$

- a. Determine A_1 such that the DC gain of the open-loop transfer function $G_1(s)$ is unity. Determine A_2 such that the DC gain of $G_2(s)$ is also unity.
- b. Using A_1 and A_2 specified in (a), determine the characteristic equation for the following closed loop unity gain feedback system. Specify your answer in the form $a_0s^n + a_1s^{n-1} + \ldots + a_n = 0$.



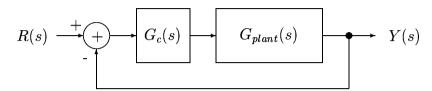
c. Use RH to determine the range of k > 0 such that the system in (b) is stable.

2. Given



- a. Sketch the root locus.
- b. Determine the value of gain k at the breakaway point.
- c. What are the poles of the above system at the gain k specified in (b)?
- d. Determine the value of gain k that will make above system is marginally stable.
- e. What are the poles of the above system at the gain k specified in (d).
- 3. For the second-order system $G_2(s)$ in item 1,
- a. Show analytically that the graph of the poles of $G_2(s)$ on the s-plane for constant- ω_n is a semicircle of radius r. Specify r in terms of ω_n .
- b. Show analytically that the graph of the poles of $G_2(s)$ for constant- ζ are two rays from the origin of the s-plane. Specify θ (the angle from the positive real axis to the ray in the second quadrant) in terms of ζ .
- c. Show which region in the s-plane corresponds to $\omega_n > 0.1$ and $\zeta > 1/\sqrt{2}$.

- 4. For the first-order system $G_1(s)$ in item 1,
- a. Derive an expression for the rise time T_r of $G_1(s)$ in terms of a. Your answer should contain exactly one logarithmic expression.
- b. Derive an expression for the delay time T_d of $G_1(s)$ in terms of a. Your answer should contain exactly one logarithmic expression.
- 5. Welding control. Given the following block diagram for a welding control system



The controller transfer function $G_c(s)$ and the plant transfer function $G_{plant}(s)$ are

$$G_c(s) = k \frac{s+a}{s+1}, \qquad G_{plant}(s) = \frac{1}{s(s+2)(s+3)}$$

where k and a are controller parameters.

- a. Determine the characteristic equation for the welding control system in terms of the controller parameters k and a. Specify your answer in the form $a_0s^n + a_1s^{n-1} + \ldots + a_n = 0$.
- b. Using RH, determine the ranges of k and a where the system is stable.