Today's EEE 101 Lecture

- transfer functions.Why use Bode plots to identify transfer functions?
- Some performance
- Compensation techniques.
- ullet Interpreting Bode plots.
 - -low response.
 - -high frequency response.

Bode Plots ©2003 M.C. Ramos EEE 101 UP EEE Department

Identifying Transfer Functions

- Frequency response method.
 - -apply a sinusoidal input and sweep the frequency ω from low frequencies to high frequencies.
 - -plot the logarithmic gain and phase plots.
 - -identify , gain, poles and zeros.
 - -determine the transfer function.
- Considerations on what method to use.
 - -accuracy of identification.
 - response (fast or slow) of the plant.

Identifying Transfer Functions

- How do we identify the systems?
 - function for unknown
 - -step (time domain) response.
 - -frequency response (Bode plots).
- Step response method.
 - -apply a unit step at the input.
 - measure rise time, , steady-state output and other time domain parameters.
 - -infer the transfer function from the measurements.

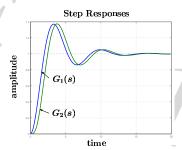
Bode Plots ©2003 M.C. Ramos
FFE 101 IP FFE Department

Identifying Transfer Functions

• Recall the comparing

$$G_1(s) = rac{1}{s^2 + 0.6s + 1} ext{ and }$$
 $G_2(s) = G_1(s) rac{9}{s^2 + 4.2s + 9}$

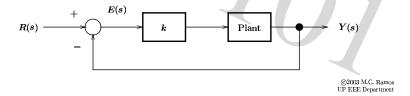
Not much difference in the step responses of $G_1(s)$ and $G_2(s)$.



Identifying Transfer Functions

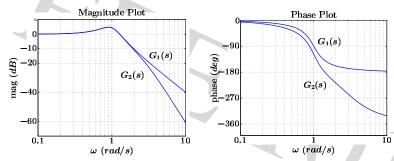
ullet Thus, may not be able to accurately determine the transfer function $G_2(s)$ from its . Given the step response of $G_2(s)$, one might incorrectly identify the TF as that of $G_1(s)$.

• Controller designed for $G_1(s)$ may not necessarily work for $G_2(s)$. Consider



Identifying Transfer Functions

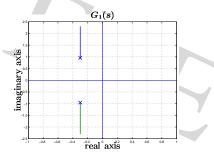
• If we use the frequency response to identify the TF, cannot mistake $G_1(s)$ and $G_2(s)$ for the other.

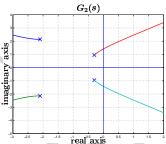


Compare the slopes of the asymptotic values of the phase angles for large ω .

Identifying Transfer Functions

• of $G_1(s)$ and $G_2(s)$.

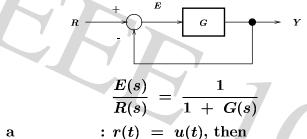




plant $G_1(s)$: the system is stable for any gain k. plant $G_2(s)$: the system is unstable for gain k > 1.35.

Performance Parameters

• Effect on the steady-state error, for a unit step input.



For a
$$: r(t) = u(t)$$
, then $e_{ss} = \lim_{s \to 0} s \frac{1}{1 + G(s)} \frac{1}{s} = \frac{1}{1 + G(s)}$

Bode Plots

Performance Parameters

- ullet Assuming G(0)>0, G(0) decreases the steady-state error.
- ullet From the Bode plots, the logarithmic gain at $\omega=0$ is $\left[20\log|G(j\omega)|\right]_{\omega=0}\ =\ 20\log|G(0)|$

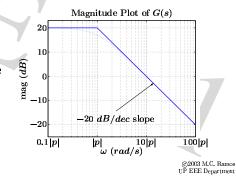
For a system of type 0, $20 \log |G(j0)|$ to the horizontal asymptote at low frequencies.

 \Rightarrow to decrease the steady-state error e_{ss} , move the low frequency asymptote upwards.

Bode Plots ©2003 M.C. Ramos EEE 101 UP EEE Department

Phase-lead and Phase-lag Networks

- Consider $G(s) = \frac{k}{s-p}$.
- To move the location of the corner frequency,
 - -introduce a zero at z_c such that $z_c = p$.
 - add the pole at location p_c to achieved the desired response.
- add gain.



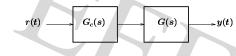
Performance Parameters

- ullet Effect on the rise time. Recall for the first order system $G(s) = rac{a}{s+a},$ the rise time T_r is $ext{by } T_r = rac{2.2}{a}$
- From the Bode plots of a pole on the real axis, |p| = |-a| is the corner frequency.
- Thus, to the rise time (faster system response), increase a. Move the corner |p| to the right.

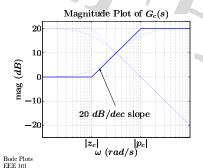
Bode Plots $$(203)\,\mathrm{M.C.~Ramos}$$ EEE 101 UP EEE Department

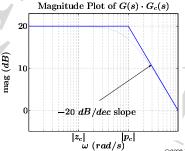
Phase-lead and Phase-lag Networks

• Use the $G_c(s)$.



$$G_c(s) = k_c \frac{s - z_c}{s - p_c}$$





©2003 M.C. Ramos UP EEE Department

Bode Plots

Phase-lead and Phase-lag Networks

Phase-lead and

controller.

$$G_c(s) = k_c \frac{s - z_c}{s - p_c}$$

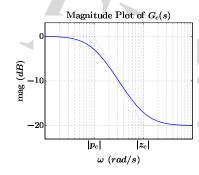
phase-lead : $|z_c| \ll |p_c|$ phase-lag $:|p_c|\ll|z_c|$

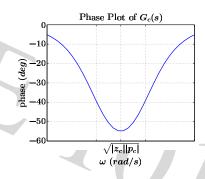
- Design considerations (for phase-lead controller).
 - $-z_c$ is located at the pole location of the original TF.
 - $-p_c$ is determined based on performance specifications.
 - $-k_c$ is computed such that there is no shift in the magnitude plot, i.e., $G(0) \cdot G_c(0) = G(0)$.

Bode Plots EEE 101 ©2003 M.C. Ramos

Phase-lead and Phase-lag Networks

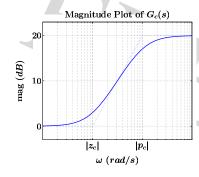
• Phasecontroller Bode plots.

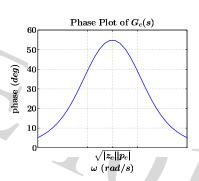




Phase-lead and Phase-lag Networks

• Phase-lead controller





Bode Plots

Bode Plots EEE 101

©2003 M.C. Ramos UP EEE Department

Interpreting Bode Plots: Low Frequency

• Effect of gain is constant at all frequencies.

-magnitude plot : $20 \log |k|$

-phase plot: 0^o for k > 0 or -180^o for k < 0

• Slope of magnitude plot depends on integral and derivative factors.

in the number of poles and the Let N be the number of zeros at the origin.

-magnitude plot : slope = -20N dB/dec

-phase plot : asymptote = -90N degrees

Interpreting Bode Plots: Low Frequency

• Steady-state error. Represent value of the magnitude plot at $w = 1 \ rad/s$ as M.

-type
$$0:20 \log |k_p| = M \Rightarrow k_p = 10^{M/20}$$

$$e_{ss} = rac{1}{1 + k_p}$$
 for a unit step input

-type 1 :
$$20 \log |k_v| = M \implies k_v = 10^{M/20}$$

$$e_{ss} = rac{1}{k_v}$$
 for a ramp input

-type 2:
$$20 \log |k_a| = M \implies k_a = 10^{M/20}$$

$$e_{ss} = \frac{1}{k_a}$$
 for a parabolic input

Summary of Today's Lecture

- Identifying transfer functions.
 - -using the step
 - -using Bode plots.
- Some performance parameters.
 - -steady-state .
 - time.
- Phase-lead / phase-lag

techniques.

• Interpreting plots.

Bode Plots EEE 101 ©2003 M.C. Ramos UP EEE Department

Interpreting Bode Plots: High Frequency

• Each pole eventually provides $-20 \ dB/dec$ magnitude slope and -90° phase shift.

Each zero eventually provides $20 \ dB/dec$ slope and 90^o phase shift.

With n = number of poles and m = number of zeros,

- -magnitude plot : slope = -20(n m) dB/dec
- -phase plot : asymptote = -90(n m) degrees
- Difference in the number of and the number of zeros is related to the stability of the closed-loop system.

Bode Plots ©2003 M.C. Ramos
FEE 101 UP FEE Department