Advanced Root Locus

° of adding poles and zeros.

e Root contour.

e Time delay.

e Root
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Effect of Adding Poles and Zeros

Effect of Adding Poles and Zeros

e Adding a pole to G(s).
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kG(s) = kG(s) - ———
s + a
imag
s-plane s Angle
in order for s to be part
of the RL, the total angle
must be (21 + 1)x.
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Effect of Adding Poles and Zeros

e Remarks.
—for a given point on the old locus, the new pole adds
more negative angle.

—since the total must not change, the RL point
moves to the right to compensate for the additional
negative angle.

e Asymptotes.
@+ U

m — n
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e Thus, for a fixed m, 6 decreases as n increases.
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Effect of Adding Poles and Zeros

e Adding a to G(s).

kG(s) = kG(s):(s + a)

Effect of Adding Poles and Zeros

e Asymptotes.

for fixed n and with m < mn.

imag

e Angle from zero reduces o-plane

the negative angle from g

the poles.

= RL point must to

the left to compensate.
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Effect of Adding Poles and Zeros

e Matlab exercise. Effect of adding a

>> [n, d] = zp2tf([], [0 -1], 1); % original system

>> rlocus(n, d);

>> [n, d] = zp2tf([]1, [0 -1

>> rlocus(n, d4);

-101, 1); % add a pole
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root locus after

a pole is
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- (20 + )=«
. om —n
= smaller |m — n| means larger steps between
asymptote angles.
lm — n| = 3 m — n| = 2
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Effect of Adding Poles and Zeros

e Matlab

. Effect of adding a zero.

>> [n, d] = zp2tf([], [0 -1], 1); % original system

>> rlocus(n, d);

>> [n, d] = zp2tf([-10], [0

>> rlocus(n, d);

.l root locus of the
@ orignal system.
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Root Root

e Applies when more than one parameter changes in the e Characteristic equation for k1 (k2 = 0).

characteristic equation. kq

1 + =
s3 4+ 352 4 2s
e Example. Consider the equation

s3 + 852 + 25 + kos + ky = O e Characteristic equation for parameter k3 (k1 # 0).

kos

1 + =0

s3 + 3s2 + 25 + Kk

e Determine the root locus for parameter ki with ks = 0.

Then, determine the root locus for parameter kg for

e Poles of the second characteristic equation are the
different values of k.

roots of the first characteristic
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Root Time Delay
e Two- root locus. e System with a
15
u(t) DELAY |—— y(t) = u(t — T)
10r b
ki = 10
@ 5T 7 . —Ts
g Y(s) = e "°U(s)
> k; = 0
&
E
B = 10 ° to the root locus.
ol , —1
* e TsG(s) = —, s = o + jw
k
" ‘ ‘ ‘ ‘ ‘ ‘
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Time Delay

e Magnitude criterion. since |e_T(‘7 + j‘*’)| = e ,

e 17IG(s)| = &

e Angle criterion. since seTle +jw) = T
ZG(s) = (21 + 1) + T

e Magnitude and angle depend of the location

s = o0 4+ jw in the s-plane.
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Time Delay

Time Delay

e Points on the real axis.

same rule as applies.
e Asymptotes.
—infinite, to the real axis.

—intersection with the imaginary axis is determined by
the angle criterion.

for large o,
ZG(s) = mO — nb
thus,
mé — n6 = (21 + 1) + wT
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eStart : k = 0.
Poles of G(s) and 0 = — oc.

eEnd: k = oo.
Zeros of G(s) and ¢ = oo.

e Number of branches.
Infinite roots = branches.
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Polynomial Approximations to Time Delay

e Exponential

£l
e_TS ~ 1 = T
B 8|
— s
" T
o Illustration.
1
—n =1:eT8 = ——
1 + Ts
—n = 2:eIs ! = 4
1 + L2 4 + 4Ts + T2s?
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Polynomial Approximations to Time Delay

e How is the time delay ?

>> step(1, [1 1]) % n =1, time delay T = 1

>> step(4, [1 4 4]) % n =2, time delay T =1

Time Delay Response, n = 1 Time Delay Response, n = 2

T

amplitude
amplitude

time time
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Polynomial Approximations to Time Delay

Polynomial Approximations to Time Delay

e Recall the first-order system.

+
ot e e =
- s + a

i From the root locus,

1]

R we can see that the system

é’ —a is for all values of

éﬂ gain k > O.

" real axis ’
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e Polynomial approximation that poles are
introduced by the time delay approximations.

= root locus is pushed to the right.

e Other time approximations are available.
Take a look at the Matlab pade command.

e Time delay usually to increased likelihood of

instability.
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Polynomial Approximations to Time Delay

e What happens if we include a ?
Gs) = e To@s) ~ L4 .9
[ﬁ n s} s + a
T
e Third-order delay with T = 1.
= ﬂ a 27 a
G(s = . = .
(s) {3 r’s—l—a 3+ 82 s+ a
171 °
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Polynomial Approximations to Time Delay

Root

e Plot the

locus for a = 1.

>> [n, dl = zp2t£([], [-1 -3 -3 -3], 27);

>> rlocus(n, 4);
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Asymptotes at

+ 1)m _ T 3

(2L

+—, +—

4 y 4 4

We can see that the
system will not be stable
for all values of gain

kE > 0.
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e Sensitivity gives a measure of the effect of parameter

variations on system performance.

High sensitivity = system not

e Define the root sensitivity.
0s

S

Approximation of root sensitivity.

S8 = =
k™ 8(nk) ok /k

e Example.

er wo

Let us say the design

our roots to be at
st = —0.5 4+ 30.5 and
s2 = —0.5 — j0.5.

From the root locus, we
get our nominal to be
ko = 50.
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the following system.

1

Gls) = 100s(s + 1)

_imaginary axis

= .
real axis
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S5 As
k: ~
Ak/k
mer B e —
Root
e Implement the gain & with a non- amplifier.
v R
out 1 + 12
Vin Ry
Ry
— for large k.
Ry
e Typical resistor tolerance : +10%.
For nominal gain kg = 50 and based on the resistor

, the gain k may vary about +20% of the

nominal value.
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Root

Root

e Then locking at root locus at gain k,

k = kg £ Ak
where Ak = 0.2kg = 10.

o k = ko — Ak = 40
k = 60 _ .

2 ¥ — 50 = s1+ Asq = —0.5 4+ 70.59
‘E“ k = 40 = As; = +370.09

g. _— .
2 T k = kg + Ak = 60
£ k= = 81+ As; = —0.5+ j0.39

= 60 .
" = As; = —j0.11
real axis
meran o —
Summary

e What happens to the root locus if we add a pole or a
zero to the original transfer function.

e Root contour. Essentially the root locus with more than
one parameter.

e Time delay. What are the consequences to our

e Root sensitivity. What a change in would do
to the roots of a system.
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e Thus the root for sq.
Asy +350.09
s = = ——— = j0.45 = 0.45/ + 90°
TAE T AR/E +0.2 J +
As —40.11
S = —b = T joss = 0.55/ — 90°
Ak/k +0.2

e For infinitesimally small of Ak, the sensitivity is

equal to the increments in k.

The angle of the sensitivity indicates the direction of the
movement of the roots with the parameter variation.
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