Today's EEE 101 Lecture

- position and time domain relationships
- Typical time domain
- First-order systems
- ullet Second-order systems

Transfer Functions EEE 101 ©2002 M.C. Ramos UP EEE Department

Poles Affect Time Behavior

 \bullet Plant : G(s)

$$R(s)$$
 $G(s)$ $Y(s)$

$$G(s) = k \frac{(s - z_1) \dots (s - z_m)}{(s - p_1) \dots (s - p_n)}$$

• Assuming no

poles and m < n,

$$G(s) = \frac{R_1}{s - p_1} + \ldots + \frac{R_n}{s - p_n}$$

Performance Specifications

- Typical time domain specifications
 - overshoot
 - time
 - -rise time
 - time to
- Typical

domain specifications

- natural frequency
- -damped frequency
- damping ratio
- -bandwidth

Performance Specifications EEE 101 ©2002 M.C. Ramos UP EEE Department

Poles Affect Time Behavior

• Impulse

$$\mathscr{L}^{-1} \Rightarrow g(t) = \left(R_1 e^{p_1 t} + \dots + R_n e^{p_n t}\right) u(t)$$

• Q : If systems are high-order, do we need to compute all the terms to get the response?

A : Not always. High-order systems sometimes behave like low-order systems.

• Study low-order

first.

First-order Systems

First-order Systems

• Consider

$$G(s) = \frac{a}{s+a}$$

Performance Specifications EEE 101 ©2002 M.C. Ramos UP EEE Department

First-order Systems

of T_r and T_d with system parameter a.

$$T_r~=~rac{2.2}{a}~=~2.2 au$$

$$T_d = \frac{0.69}{a} = 0.69\tau$$

Matlab command.>> step(2, [1 2])

• Q: What is the DC gain?

• Q: What is the

-state output for x(t) = u(t)?

• Definitions.

 T_r time for the step response to go from 10% to 90%. delay time \triangle time for the step response

elay time $\stackrel{\triangle}{=}$ T_d

time for the step response to reach 50% of the final value.

Performance Specifications EEE 101 ©2002 M.C. Ramos UP EEE Department

Second-order Systems

• Consider

$$G(s) \ = \ rac{\omega_n^2}{s^2 \ + \ 2\zeta\omega_n s \ + \ \omega_n^2}$$

Second-order Systems

• What is the DC gain?

The DC gain is the steady-state output of the system in response to a step input.

• Definitions.

 $M_p\stackrel{\triangle}{=} \mathrm{peak}$

max overshoot

 $T_p\stackrel{\triangle}{=}$ time to peak overshoot

 $T_s \stackrel{\triangle}{=} ext{settling time}$

Performance Specifications EEE 101 ©2002 M.C. Ramos UP EEE Department

Second-order Systems

• System

ζ	Description	Poles
$\zeta > 1$	real poles overdamped	LHP
$\zeta = 1$	real identical poles critically damped	LHP
$0 < \zeta < 1$	complex conjugate poles underamped	LHP
$\zeta = 0$	imaginary poles undamped	imaginary axis
$\zeta < 0$	poles with positive real part negatively damped	RHP

Second-order Systems

• Poles of the second-

system.

$$s = -\zeta \omega_n \pm j\omega_n \sqrt{1 - \zeta^2}$$

• System parameters.

 ω_n : natural frequency

 ζ : damping factor

• Matlab command.

>> step(2, [1 1 2])

Performance Specifications EEE 101 ©2002 M.C. Ramos UP EEE Department

Second-order Systems

• Step response.

$$Y(s) \; = \; G(s) \, rac{1}{s} \; = \; rac{1}{s} \; - \; rac{s \; + \; 2 \zeta \omega_n}{(s \; + \; \zeta \omega_n)^2 \; + \; \omega_n^2 (1 \; - \; \zeta^2)}$$

$$\Rightarrow y(t) = 1 - \frac{e^{-\frac{t}{\tau}}}{\sqrt{1-\zeta^2}}cos(\omega_d t - \rho_d), \ t \geq 0$$

where

$$\sigma = -\zeta \omega_n \qquad \tau = \frac{1}{|\sigma|}$$

$$\rho_d = \sin^{-1} \zeta \qquad \omega_d = \omega_n \sqrt{1 - \zeta^2} \leftarrow \text{damped}_{\omega}$$

Second-order Systems

• Location of

in the s-plane.

Performance Specifications EEE 101 ©2002 M.C. Ramos UP EEE Department

In Summary

• System parameters are the

point in the design.

- The behavior of first-order systems is dictated by one parameter.
- Second-order systems behavior is governed by two parameters.

• Two ways of

at the poles in the s-plane.

Performance Specifications EEE 101 ©2002 M.C. Ramos UP EEE Department