Upcoming Lecture Features

- Main things we will be looking at.
 - -block diagrams
 - -signal flow graphs
 - -Mason gain rule
 - general control system
- For today's lecture, we have
 - diagrams
 - interpreting a function

Transfer Functions EEE 101 ©2002 M.C. Ramos UP EEE Department

What is a Transfer Function?

- Relationship between controlling variable(s) and controlled variable(s) are needed.
- usually represented by a transfer function.
- Controlling variable input
 Controlled variable state, output
 Transfer function of input to output of a dynamic system.

What is a Transfer Function?

- Dynamic systems are represented by equations.
- Laplace transformation simplifies solutions to differential equations.
- In control systems, variables are specific or desired behavior.

Transfer Functions EEE 101 ©2002 M.C. Ramos UP EEE Department

Block Diagrams

• Input-output

usually depicted by blocks.

• Signal flow is

from input to output.

• Simple systems can be represented by a single block.

Block Diagrams

• Complex systems are represented by multiple and interconnected blocks.

Room example.

Hard to model the system as one complex system.

Break it down into subsystems.

- Block diagrams may be reduced by block diagram transformations.
 - connected
 - -single feedback
 - parallel connected

Transfer Functions EEE 101 ©2002 M.C. Ramos UP EEE Department

Block Diagrams

• Electrical equations.

$$e_a = R_a i_a + L_a \dot{i}_a + e_b \text{ (KVL)}$$

 $e_b = k_b \dot{\theta} \text{ (back-EMF)}$

• equations.

$$T = k_i i_a$$
 (motor torque)
 $T = J\ddot{\theta} + B\dot{\theta}$ (sum torques)

• Variables.

input
$$(e_a) \Rightarrow \text{state } (\dot{\theta} \text{ and } i_a) \Rightarrow \text{output } (\theta)$$

Block Diagrams

- Example. DC
 - -small rotor inertia
 - high torque-to-inertia ratio

• Focus on armature-current

Transfer Functions ©2002 M.C. Ramos
EEE 101 UP EEE Department

Block Diagrams

• From equation.

$$egin{aligned} e_a &= R_a i_a + L_a \dot{i}_a + e_b \ &\Rightarrow R_a i_a + L_a \dot{i}_a = e_a - e_b \ \mathscr{L} &\Rightarrow R_a I_a + L_a s I_a = E_a - E_b \ &\Rightarrow I_a &= rac{1}{R_a + s L_a} (E_a - E_b) \end{aligned}$$
 (ignore I.C.)

• From back-EMF

$$egin{array}{ll} e_b &= k_b \dot{ heta} \ \mathscr{L} \Rightarrow E_b &= k_b \Omega \end{array}$$

Block Diagrams

• From motor equation,

$$T_m = k_i i_a \ \mathscr{L} \Rightarrow T_m = k_i I_a$$

• From

of torques equation,

$$T_m = J\ddot{ heta} + B\dot{ heta} + T_L \ \Rightarrow T_m - T_L = J\ddot{ heta} + B\dot{ heta} = J\dot{\omega} + B\omega \ \mathcal{L} \Rightarrow T_m - T_L = Js\Omega + B\Omega \ \Rightarrow \Omega = rac{1}{sJ + B}(T_m - T_L)$$

Block Diagram Transformations

• Series blocks

• loop

Transfer Functions

©2002 M.C. Ramos

EEE 101

UP EEE Department

Block Diagrams

• Block diagram of a

system

where
$$\Omega(s) = \mathcal{L}[\theta(t)]$$
 $\Theta(s) = \mathcal{L}[\theta(t)]$

Transfer Functions EFE 101 ©2002 M.C. Ramos UP EEE Department

Block Diagram Transformations

• Closed-loop

function

error equation :
$$E(s) = R(s) - B(s)$$

 $\Rightarrow E(s) = R(s) - H(s)Y(s)$
: $Y(s) = G(s)E(s)$
 $\Rightarrow Y(s) = G(s)[R(s) - H(s)Y(s)]$

solving for
$$Y(s)$$
: $Y(s)[1 + G(s)H(s)] = G(s)R(s)$

$$\Rightarrow rac{Y(s)}{R(s)} = rac{G(s)}{1 + G(s)H(s)}$$

Block Diagram Transformations

• Example. DC servomotor with no load (i.e., $T_L = 0$).

Summary

- There is more than one way to a system.

 The choice depends on what you want to do.
- Transfer function representation.

 One , one representation. Very useful in control system feedback design.
- Block diagrams are also used to represent systems.

 You usually come up with first, then simplify to a transfer function.

 $\begin{array}{ccc} {\rm Transfer \ Functions} & & & & & & \\ {\rm EED \ 101} & & & & & & \\ {\rm UP \ EEE \ Department} & & & & \\ {\rm UP \ EEE \ Department} & & & & \\ {\rm Transfer \ Functions} & & & & \\ {\rm UP \ EEE \ Department} & & \\ {\rm UP \ EEE \ Department} & & & \\ {\rm UP \ EEE \ Department} & & \\ {\rm UP \ EEE \ Department} & & \\ {\rm UP \ EEE \ Department} & & \\ {\rm UP \ EEE \ Department} & & \\ {\rm UP \ EEE \ Department} & & \\ {\rm UP \ EEE \ Department} & & \\ {\rm UP \ EEE \ Department} & & \\ {\rm UP \ EEE \ Department} & & \\ {\rm UP \ EEE \ Department} & & \\ {\rm UP \ EEE \ Department} & & \\ {\rm UP \ EEE \ Department} & & \\ {\rm UP \ EEE \ Department} & & \\ {\rm UP \ EEE \ Depa$

Block Diagram Transformations

reduction ...

• Transfer function of a DC servomotor

