• Dynamic systems are usually differential equations.

by

- -linear ODE
- -nonlinear ODE
- partial differential (PDE)
- Ordinary differential equations (how to solve them).
 - -classical approach
 - transforms

Basic Math Tools EEE 101 ©2002 M.C. Ramos UP EEE Department

Today's EEE 101 Lecture

- Basic tools.
- Linear systems.
- State-space representation.
- Linearization.

• Nonlinear

Basic Math Tools

EEE 101

equations.

$$ML^2\frac{d^2\theta(t)}{dt^2} \ +$$

©2002 M.C. Ramos

UP EEE Department

Differential Equations

 \bullet An *n*-th order differential equation (DE) is

$$a_{n+1}\frac{d^ny(t)}{dt^n} + \dots + a_2\frac{dy(t)}{dt} + \dots = f(t)$$

 \Rightarrow homogenous if f(t) = 0

• Input-output relationship.

Linear Time-invariant Systems

State-space Representation

• Linear systems

• Linear system satisfies

 $-{\bf homogeneity}$

Basic Math Tools EEE 101 ©2002 M.C. Ramos UP EEE Department

Differential Equations

• Example. Second-order differential equation.

$$\frac{d^2}{dt^2}x(t) + 3\frac{d}{dt}x(t) + 2x(t) = 5u(t)$$

Initial

$$x(0) = -1$$
 $x^{1}(0) = \frac{dx(t)}{dt}\Big|_{t=0} = 2$

Solution.

$$x(t) = \frac{5}{2} - 5e^{-t} + \frac{3}{2}e^{-2t}, t \ge 0$$

• Consider a

• We can now

the system by

Basic Math Tools EEE 101 ©2002 M.C. Ramos UP EEE Department

Linear Time-invariant Systems

• Linear systems

• Time-invariant linear systems (LTI)

$$egin{array}{lll} ext{III.} & ext{independent} \ f(t) &= f_i(t- au), \; au \in \Re \ & & \downarrow \ y(t) &= y_i(t- au) \end{array}$$

State-space Representation

State-space Representation

• Now consider a

ODE.

• Define a vector

$$x \equiv egin{bmatrix} y \ \dot{y} \end{bmatrix} \quad \Rightarrow \quad \dot{x} \equiv egin{bmatrix} \dot{y} \ \ddot{y} \end{bmatrix} \leftarrow ext{function of } x \ \leftarrow ext{function of } x ext{ and } f \end{cases}$$

Basic Math Tools EEE 101

©2002 M.C. Ramos UP EEE Department

©2002 M.C. Ramos

State-space Representation

• Output $\dot{y}(t_0)$ is a of $f(t_0), y(t_0)$ $+ \Delta t) = y(t_0) + \dot{y}(t_0)\Delta t$

• Example. Simple

• Dynamic equation.

$$ML^2\ddot{\theta} + B\dot{\theta} +$$

Basic Math Tools EEE 101

©2002 M.C. Ramos UP EEE Department

State-space Representation

• Then ...

$$= \underbrace{\begin{bmatrix} \dot{y} \\ -\frac{1}{a_3}(a_2\dot{y} + a_1y) \end{bmatrix}}_{\text{depends on } x} + \underbrace{\begin{bmatrix} 0 \\ \frac{1}{a_3}f \end{bmatrix}}_{\text{depends on } f}$$

Basic Math Tools EEE 101

Linear Approximations

- Necessary conditions for linear systems.
 - -principle of
 - property of homogeneity
- Examples.

$$-y = x^2$$

not linear (does not satisfy superposition)

$$-y = mx + b$$

not linear (does not satisfy

Basic Math Tools EEE 101 ©2002 M.C. Ramos UP EEE Department

State-space Representation

equation.

$$egin{aligned} y &\equiv egin{bmatrix} heta \ \dot{ heta} \end{bmatrix} &\Rightarrow \dot{y} &\equiv egin{bmatrix} heta \ \ddot{ heta} \end{bmatrix} \ &-rac{1}{ML^2}(B\dot{ heta} + MgLsin heta) + rac{1}{ML^2}T \ &\dot{ heta} \end{bmatrix}$$

$$\dot{y} \; = \; egin{bmatrix} \dot{ heta} \ \ddot{ heta} \end{bmatrix} \; = \; egin{bmatrix} \dot{ heta} \ -rac{1}{ML^2}(B\dot{ heta} \; + \; Lsin heta) \end{bmatrix} + egin{bmatrix} 0 \ rac{1}{ML^2} \end{bmatrix} T$$

State-space representation is important in control design and is useful in of system behavior.

Linear Approximations

• Mechanical and electrical elements : over large range of variables.

• Thermal and fluid elements: highly

• Assume a general model : y(t) = g[x(t)]

-x(t): input variable

-y(t): response variable

 $-g(\cdot)$: nonlinear function relating y(t) and x(t)

Basic Math Tools

EEE 101

©2002 M.C. Ramos

UP EEE Department

Linear Approximations

• But y = mx + b may be linear about an operating point.

• Operating point, point : x_0 , y_0

• For small changes Δx and Δy $x = x_0 + \Delta x \text{ and } y = y_0 + \Delta y$ y = mx + b $\Rightarrow y_0 + \Delta y = mx_0 + m\Delta x + b$ $\Rightarrow \Delta y = m\Delta x \text{ (satisfies necessary conditions)}$

Linear Approximations

• The at the operating point,

$$\left. \frac{dg}{dx} \right|_{x=x_0}$$

may be used to approximate the curve over a small range of $(x - x_0)$.

• Approximation for y(t) is then

$$y = g(x_0) + \frac{dg}{dx}\Big|_{x=x_0} (x - x_0) = y_0 + m(x - x_0)$$

where m is the slope at the

point.

Basic Math Tools EEE 101 ©2002 M.C. Ramos UP EEE Department

©2002 M.C. Ramos

UP EEE Department

Linear Approximations

- Assume $g(\cdot)$ is continuous within some range of interest.
- Taylor series expansion.

$$egin{array}{lll} y &=& g(x) = g(x_0) \; + \; rac{dg}{dx}igg|_{x=x_0} rac{(x \; - \; x_0)}{1!} \ &+ \; rac{d^2g}{dx^2}igg|_{x=x_0} rac{(x \; - \; x_0)^2}{2!} \; + \; \ldots \end{array}$$

• Example (at
$$x_0 = 0$$
). $e^x = 1 + x + \frac{1}{2}x^2 + \dots$

Linear Approximations

- ullet Equilibrium point : spring = gravitational force $f_0 = Mg$
- Nonlinear spring : $f = x^2 \Rightarrow x_0 = \sqrt{Mg}$
- Linear model for perturbations about x_0 is

$$\Delta f \; = \; m \Delta x$$
 where $m \; = \; rac{df}{dx}igg|_{x_0} \; = \; 2x_0$

Basic Math Tools ©2002 M.C. Ramos EEE 101 UP EEE Department

Linear Approximations

• Rewriting as a equation.

$$(y - y_0) = m(x - x_0)$$

 $\Delta y = m\Delta x$

• Example. Nonlinear spring.

Linear Approximations

- Equlibirum point : $\theta_0 = 0^o \Rightarrow T_0 = 0$.
- Linear approximation

$$egin{array}{lll} T &- T_0 &=& MgLrac{\partial sin heta}{\partial heta}igg|_{ heta= heta_0} (heta &- heta_0) \ \Rightarrow & T &=& MgL(cos0^o)(heta-0^o) &=& MgL heta \end{array}$$

• The approximation is good for $-\pi/4 \le \theta \le \pi/4$. For a swing within $\pm 30^{\circ}$, the response is within 2% of the actual nonlinear pendulum response.

Basic Math Tools EEE 101 ©2002 M.C. Ramos UP EEE Department

Linear Approximations

• Example. Pendulum oscillator.

ullet Torque on

is
$$T = MgL\sin\theta$$
.

Relationship between T and θ is nonlinear.

Summary

ullet We will be dealing a lot with

equations.

• Simple to handle linear time-invariant systems.

• Why state-space representation?

• Nonlinear

and linearization.