Forward Kinematics

- Given joint position q, determine end-effector position/orientation p.
- $ullet p = f(q) \text{ where } q \in \mathbb{R}^n, p \in \mathbb{R}^m, m < n.$
- How to determine the forward kinematic equations?
 - -using transformation matrices
 - -directly from robot geometry

Introduction EE 236 ©2005 M.C. Ramos UP EEE Institute

Kinematics

• Consider the following manipulator.

How is a point in the $x_0y_0z_0$ coordinate frame expressed in the $x_1y_1z_1$ coordinate frame?

Forward Kinematics

• Using transformation matrices.

$$p \;=\; A_0^1 A_1^2 \ldots A_{n-1}^n \left[egin{smallmatrix} 0 \ 0 \ 0 \ 1 \end{matrix}
ight]$$

- Directly from geometry
 - write out end-effector position/orientation by inspection.
 - -may be difficult for three-dimensional space.

Kinematics EE 236 ©2005 M.C. Ramos UP EEE Institute

Kinematics

• Transformation equations.

$$\bar{x}_0 = r \cos \theta$$

$$\bar{y}_0 = r \sin \theta$$

$$\bar{z}_0 = \bar{z}_0$$

• Expression for a point in the $x_0y_0z_0$ coordinate frame.

$$p_{x_0} = \bar{x}_0 - p_{x_1} \sin \theta + p_{z_1} \cos \theta$$

$$p_{y_0}=ar{y}_0 \ + \ p_{x_1}\cos heta \ + \ p_{z_1}\sin heta$$

$$p_{z_0} = \bar{z_0} + p_{y_1}$$

• Rewriting into rotation and translation components.

$$\begin{bmatrix} p_{x_0} \\ p_{y_0} \\ p_{z_0} \end{bmatrix} = \begin{bmatrix} -\sin\theta & 0\cos\theta \\ \cos\theta & 0\sin\theta \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} p_{x_1} \\ p_{y_1} \\ p_{z_1} \end{bmatrix} + \begin{bmatrix} \bar{x}_0 \\ \bar{y}_0 \\ \bar{z}_0 \end{bmatrix}$$

• As a single matrix.

$$\begin{bmatrix} p_{x_0} \\ p_{y_0} \\ p_{z_0} \\ 1 \end{bmatrix} = \begin{bmatrix} -\sin\theta & 0\cos\theta & \bar{x}_0 \\ \cos\theta & 0\sin\theta & \bar{y}_0 \\ 0 & 1 & 0\bar{z}_0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_{x_1} \\ p_{y_1} \\ p_{z_1} \\ 1 \end{bmatrix}$$

Changes reference from the 1st coordinate frame to the 0th coordinate frame.

Kinematics ©2005 M.C. Ramos EE 236 UP EEE Institute

D-H Guidelines : Coordinate Frames

- The y_i -axis is determined using the right-hand rule so as to complete the Cartesian $x_iy_iz_i$ -coordinate system.
- The origin of the $x_i y_i z_i$ -coordinate system for link i is placed at the intersection of the z_{i-1} and z_i -axes, or at the intersection of the z_i -axis and the common normal between the z_{i-1} and z_i axes.
- Repeat above steps for each i.

- The z_i -axis is assigned along the axis of the motion of link i+1. The positive z_i -direction for a revolute link is such that the positive rotation of θ_{i+1} is CCW.
- If the z_i and z_{i-1} axes intersect, the x_i -axis has a direction determined by the cross-product $\pm (k_{z_{i-1}} \times k_{z_i})$ where k_{z_i} is the unit vector in the positive direction of the z_i -axis and $k_{z_{i-1}}$ is defined similarly. If $k_{z_{i-1}}$ and k_{z_i} are parallel, then the direction of x_i -axis is along the common normal of $k_{z_{i-1}}$ and k_{z_i} .

D-H Guidelines : Structural Kinematic Parameters

- Link length a_i . The distance from the origin of the *i*th coordinate frame to the intersection of the z_{i-1} and the x_i -axes measured along the x_i -axis.
- Offset angle α_i . The angle of rotation about the positive x_i -axis measured from the positive z_{i-1} -axis (or its parallel projection) to the positive z_i -axis where the positive direction is CCW.

- Joint angle θ_i . The angle of rotation about the positive z_{i-1} -axis measured from the positive x_{i-1} -axis to the positive x_i -axis (or its parallel projection) where the positive direction is CCW.
- Link offset d_i . The distance from the origin of the (i - 1)st coordinate frame to the intersection of the z_{i-1} - and the x_i -axes measured along the z_{i-1} -axis. If the z_{i-1} - and the x_i -axes do not intersect, d_i is the perpendicular distance between the x_i - and x_{i-1} -axes.

©2005 M.C. Ramos Kinematics UP EEE Institute

Stanford/JPL Kinematics

• Transformation matrices.

Revolute joint.

$$A_{i-1}^i = egin{bmatrix} \cos heta_i & -\cos lpha_i \sin heta_i & \sin lpha_i \sin heta_i & a_i \cos heta_i \ \sin lpha_i & \cos lpha_i \cos heta_i & -\sin lpha_i \cos heta_i & a_i \sin heta_i \ 0 & \sin lpha_i & \cos lpha_i & d_i \ 0 & 0 & 1 \end{bmatrix}$$

Prismatic joint.

$$A_{i-1}^i = egin{bmatrix} \cos heta_i & -\coslpha_i\sin heta_i & \sinlpha_i\sin heta_i & 0\ \sin heta_i & \coslpha_i\cos heta_i & -\sinlpha_i\cos heta_i & 0\ 0 & \sinlpha_i & \coslpha_i & d_i\ 0 & 0 & 0 & 1 \end{bmatrix}$$

©2005 M.C. Ramos Kinematics UP EEE Institute

Stanford/JPL Kinematics

• Structural kinematic parameters. Joint variables are θ_1 , θ_2 , d_3 , θ_4 , θ_5 and θ_6 .

link \boldsymbol{i}	d_i	a_i	$lpha_i$	$ heta_i$
1	d_1	0	-90^{o}	$ heta_1$
2	d_2	0	90^{o}	$ heta_2$
3	d_3	0	0	-90^{o}
4	0 <	0	-90^{o}	$ heta_4$
5	0	0	90^{o}	$ heta_5$
6	d_6	0	0	θ_6

EE 236