EE 233
Digital Control Systems Design

Course description :

Z-transforms and state variable representation of discrete-time systems; models for mixed continuous and discrete-time systems; modeling asynchronous sampling; analysis and design by root locus,  frequency response, and state-space techniques; controllability, observability and observer design; linear quadratic optimal control and state estimation; optimization and design issues of mixed continuous and discrete-time systems; inter sample behavior; robust control; sampling rate  selection; effects of quantization and finite precision errors ; multi-variable control and optimization; multirate systems; computer simulations; design projects.
Prerequisite : EEE 101

Course objectives :

At the end of this course, the student should be able :
To derive a discrete-time mathematical model, block diagram and signal flow graph for a physical system.  To derive a discrete-time LTI model from a mathematical model.  To perform stability and sensitivity analysis on systems, design cascade and feedforward compensators to meet transient and frequency response specifications.  To use computer-aided control tools to verify root locus, transient and frequency response characteristics of a system.

Text :

Phillips and Nagle.  Digital Control System Analysis and Design, 3rd edition.  Prentice-Hall.

References :

Ogata.  Discrete-time Control Systems.
B.C. Kuo.  Automatic Control Systems, 5th edition.
D'Azzo and Houpis.  Linear Control System Analysis and Design :
Conventional and Modern, 3rd edition.
R.C. Dorf.  Modern Control Systems, 6th edition.
Shahian and Rasul.  Control System Design Using Matlab.

Grading :

2/3
2 Long exams 40 %
Homeworks and quizzes   10 %
3 Machine problems   50 %

1/3
Lab exercises

Grading scale :

92 -  100    1.0
88 - < 92    1.25
84 - < 88    1.5
80 - < 84    1.75
76 - < 80    2.0
72 - < 76    2.25
68 - < 72    2.5
64 - < 68    2.75
60 - < 64    3.0
< 60           5.0

Course outline :

I.  Class policies
    A. Class requirements / expectations
    B. Possible class projects

II.  Overview
    A. History
    B. Use of feedback
    C. What is feedback analysis and design

III.  Discrete-Time Systems and the z-Transform.
    A.  What are discrete-time systems
    B.  The z-transform
    C.  Solution of difference equations

IV.  Sampling and Reconstruction.
    A.  Ideal sampler
    B.  Data reconstruction

V.  Open-Loop Discrete-Time Systems.
    A.  E(z) and E*(s)
    B.  Open-loop systems with digital filters
    C.  State-variable model

VI.  Closed-Loop Systems.
    A.  Concepts of closed-loop systems
    B..  State-variable model
    C.  System Time-Response Characteristics.
    D.  Stability Analysis Techniques.

VII.  Digital Controller Design.
    A.  Control specifications
    B.  Compensation
    C.  PID controllers

VIII. Pole-Assignment Design and State Estimation.

IX. Linear Quadratic Optimal Control.

X. Sampled-Data Transformation of Analog Filters.

XI. Digital Filter Structures.