Today's EE 233 Lecture

- Nyquist criterion.
- Bode plots.
- Gain and phase margins.
- Frequency response interpretation.

Stability Analysis Techniques EE 233 ©2003 M.C. Ramos UP EEE Department

Nyquist Criterion

• The transfer function for the discrete-time system is

$$\frac{C^*(s)}{R^*(s)} = \frac{G^*(s)}{1 + [GH]^*(s)}$$

• The characteristic equation for the CT system is

$$1 + G_p(s)H(s) = 0$$

The continuous-time system is stable if all poles are in the LHP.

Nyquist Criterion

• Consider the following systems.

• The transfer function for the continuous-time system is

$$\frac{C(s)}{R(s)} = \frac{G_p(s)}{1 + G_p(s)H(s)}$$

Stability Analysis Techniques EE 233 ©2003 M.C. Ramos UP EEE Department

Nyquist Criterion

• The characteristic equation for the discrete-time system is

$$1 + [GH]^*(s) = 0$$

The discrete-time system is stable if all poles are in the LHP.

• The discrete-time system characteristic equation may also be written as

$$1 + [GH](z) = 0$$

In this form, the system is stable if all the poles are inside the unit circle.

Nyquist Criterion

- Based on Cauchy's principle of the argument.
- Theorem. Let f(z) be the ratio of two polynomials in z. Let the closed curve \mathcal{C} in the z-plane be mapped into the complex plane through mapping f(z).

If f(z) is analytic within and on C, except at a finite number of poles, and if f(z) has neither poles nor zeros on C, then

$$N = Z - P$$

where Z and P are the number of zeros and poles of f(z) in C, respectively. N is the number of encirclements of the origin, taken in same sense as C.

Stability Analysis Techniques ©2003 M.C. Ramos FE 233 1P FEE Department

Nyquist Criterion

- We map the contour using the open-loop function $G_p(s)H(s)$. This is the same as plotting $G_p(s)H(s)$ on the complex plane for $-j\infty < s < j\infty$. This plot is commonly known as the Nyquist diagram.
- We then count the number of clockwise encirclements N of the point -1 + j0 by the mapped contour. Then,

$$N = Z - P \Rightarrow Z = N + P$$

From the Nyquist criterion, Z is number of zeros of the characteristic equation in RHP and P is the number of poles of the open-loop function in the RHP.

Thus, for stability, Z must be zero.

Nyquist Criterion

- How do we use this? Let us refresh our memories by considering an analog system.
- ullet The closed curve $\mathcal C$ is selected to encompass the entire RHP. This is the Nyquist path.

Stability Analysis Techniques FF 233 ©2003 M.C. Ramos UP EEE Department

Nyquist Criterion

• Example 1. Consider the continuous-time system below and the corresponding Nyquist diagram of the open-loop TF for k = 1.

The Nyquist diagram extends all the way to ∞ .

• N = 0 since there are no encirclements of -1 + j0.

Nyquist Criterion

• Also, P = 0 since the open-loop TF has no poles in the RHP. Thus,

$$Z = N + P = 0$$

Thus, the system is stable.

• It can be shown the system is also stable for any k > 0.

Stability Analysis Techniques

©2003 M.C. Ramos UP EEE Department

Nyquist Criterion

• Second, $[GH]^*(j\omega)$ is an infinite series given by

$$[GH]^*(j\omega) \; = \; rac{1}{T} \sum_{n=-\infty}^{\infty} GH(j\omega \; + \; jn\omega_s)$$

Physical systems are generally low-pass, thus a few terms of $[GH]^*(j\omega)$ may be sufficient to approximate the function.

• Thus, an approximate Nyquist diagram may be generated without necessarily getting the z-form of the TF.

Nyquist Criterion

• Example 2. Now consider the following.

Characteristic equation.

$$1 + [GH]^*(s) = 0$$

The Nyquist diagram may be generated by using the same technique for continuous-time systems on $[GH]^*(s)$. This involves sorting out two issues.

• First, $[GH]^*(s)$ is periodic in s with period $j\omega_s$. Thus, we need only plot $[GH]^*(j\omega)$ for $-\omega_s/2 \leq \omega \leq \omega_s/2$ in order to get the frequency response.

Stability Analysis Techniques EE 233 ©2003 M.C. Ramos UP EEE Department

z-plane Nyquist Diagram

• The Nyquist diagram in the z-plane can also be generated.

• Since we are interested in the unit circle for the z-plane, the Nyquist path is the unit circle tranversed in the CCW direction.

A modification is introduced to the path if the the open-loop function has pole at z=1.

• Apply Cauchy's principle of the argument

$$N = -(Z_i - P_i)$$

where Z_i and P_i are the zeros of the characteristic equation and the poles of the open-loop function, respectively, inside the unit circle.

N is the number of clockwise encirclements of -1 of the map of [GH](z).

• We want to know zeros and poles outside the unit circle. Let Z_o and P_o be the zeros of the characteristic equation and the poles of the open-loop function, respectively, outside the unit circle.

Stability Analysis Techniques

©2003 M.C. Ramos UP EEE Department

z-plane Nyquist Diagram

• Example 3. Determine the stability of the following.

The open-loop function is

$$G(z) = \frac{0.368z + 0.264}{(z - 1)(z - 0.368)}$$

From G(z), P = 0. From the Nyquist plot, N = 0.

• Observe in general that 1 + [GH](z) have the same orders for the numerator and denominator. Thus,

$$Z_o + Z_i = P_o + P_i \Rightarrow Z_i - P_i = P_o - Z_o$$

• This gives $N = Z_o - P_o$ which we write as our Nyquist criterion for z-plane

$$N = Z - P \Rightarrow Z = N + P$$

where N= clockwise encirclements of -1, Z= zeros of the characteristic equation outside the unit circle, and P= poles of the open-loop function (poles of the characteristic equation) outside the unit circle.

Stability Analysis Techniques EE 233 ©2003 M.C. Ramo

z-plane Nyquist Diagram

• From the Nyquist criterion,

$$Z = N + P = 0$$

The system is stable.

• If a forward gain k is added, the system will be unstable at gain k = 1/0.418 = 2.39.

However, for the same system but without sampling, the system is stable for any k > 0.

• Destabilizing effect of sampling can be traced to the phase lag introduced by the sampler and data hold.

Bode Plots

- Bode plots for continuous-time systems can be exact or aymptotic.
- Asymptotic plots (straight-line approximations of exact plots) are convenient to use for analysis and design.
- \bullet Need w-plane transfer function of discrete-time system to use Bode plots in analysis and design.
- An advantage of Bode plots is that Bode plots of individual factors can first be generated and then added to get the Bode plot of the entire TF.

Stability Analysis Techniques ©2003 M.C. Ramos EE 233 UP EEE Department

Standard Bode Plots

• Poles and zeros at the origin.

poles:

zeros : s^m

Standard Bode Plots

• Pure gain.

k > 0

Stability Analysis Techniques EE 233 ©2003 M.C. Ramos UP EEE Department

Standard Bode Plots

• Poles on the real axis.

$$\frac{(-p)^n}{(s-p)^n}$$

Standard Bode Plots

• Zeros on the real axis.

$$\frac{(s-z)^n}{(-z)^n}, \qquad z < 0$$

Stability Analysis Techniques EE 233 ©2003 M.C. Ramos UP EEE Department

Bode Plots

• Example 4. Draw the Bode plots for the system in the previous example.

Performing bilinear transformation,

$$G(w) = -\frac{0.0381(w - 2)(w + 12.14)}{w(w + 0.924)}$$

$$G(j\omega_w) = -rac{0.0381(j\omega_w \ - \ 2)(j\omega_w \ + \ 12.14)}{j\omega_w(j\omega_w \ + \ 0.924)} \ = -rac{\left(rac{j\omega_w}{2} \ - \ 1
ight)\left(rac{j\omega_w}{12.14} \ + \ 1
ight)}{j\omega_w\left(rac{j\omega_w}{0.924} \ + \ 1
ight)}$$

Standard Bode Plots

• Complex conjugate poles.

$$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2},$$

Stability Analysis Techniques EE 233 $\,$

©2003 M.C. Ramos UP EEE Department

Bode Plots

• Magnitude and phase plots.

• What are the corner frequencies? What are the gain and phase margins?

Bode Plots

- In practice, Bode plots are simple to generate using software packages such as Octave.
- Frequency response can be calculated directly from $[GH]^*(s)$ or [GH](z). We can get w-plane frequency response using

$$\omega_w \; = \; rac{2}{T} an \left(rac{\omega T}{2}
ight)$$

It is not necessary to get G(w) in this case.

Stability Analysis Techniques

©2003 M.C. Ramos UP EEE Department

Frequency Response Interpretation

- Physical interpretation of frequency response of continuous-time systems is well discussed in basic control courses.
- How does the frequency response of a discrete-time system relate to the physical system response?
- Consider the system

$$C(z) = G(z)E(z)$$

with a sampled sine wave input of magnitude A and frequency ω .

Gain-phase Plot

• The gain-phase plot presents the same information in the Bode plots in a different form.

Gain-phase plot graphs the gain versus the phase for different frequencies.

• Gain-phase plot for previous example.

Stability Analysis Techniques

©2003 M.C. Ramos UP EEE Department

Frequency Response Interpretation

• Thus.

$$E(z) \; = \; {\cal Z}[A\sin\omega t] \; = \; rac{zA\sin\omega T}{(z \; - \; \epsilon^{j\omega T})(z \; - \; \epsilon^{-j\omega T})}$$

and

Stability Analysis Techniques EE 233

$$C(z) = rac{G(z)zA\sin\omega T}{(z - \epsilon^{j\omega T})(z - \epsilon^{-j\omega T})} \ = rac{k_1z}{z - \epsilon^{j\omega T}} + rac{k_2z}{z - \epsilon^{-j\omega T}} + C_G(z)$$

where $C_G(z)$ are terms attributed to the poles of G(z), and k_1 and k_2 are constants.

Frequency Response Interpretation

• Solving for k_1 and k_2 ,

$$k_1 = rac{G(\epsilon^{j\omega T})A\sin\omega T}{\epsilon^{j\omega T} - \epsilon^{-j\omega T}} = Arac{G(\epsilon^{j\omega T})}{2j}$$
 $k_2 = rac{G(\epsilon^{-j\omega T})A\sin\omega T}{\epsilon^{-j\omega T} - \epsilon^{j\omega T}} = Arac{G(\epsilon^{-j\omega T})}{2j}$

• Taking the inverse z-transform of C(z), we get

$$c(kT) = k_1(\epsilon^{j\omega T})^k + k_2(\epsilon^{-j\omega T})^k + \mathcal{Z}^{-1}[C_G(z)]$$

With a stable system, $\mathcal{Z}^{-1}[C_G(z)] \rightarrow 0$ as $t \rightarrow 0$.

Stability Analysis Techniques EE 233

©2003 M.C. Rame UP EEE Departme

Summary

- Nyquist criterion applies to discrete-time systems too. But we have a different Nyquist path.
- Bode plot techniqes for continuous-time also useful for discrete-time. We need to do a bilinear transform.
- Gain and phase margins have same definition as in the analog world. We can extract them from the Nyquist plot or Bode plots in the same manner.
- Frequency response. Expecting something different?

Stability Analysis Techniques ©2003 1 EE 233 UP EEE

Frequency Response Interpretation

• Looking at the steady-state output of the system and assuming that G(z) is stable,

$$egin{aligned} c_{ss}(kT) &= k_1 (\epsilon^{j\omega T})^k \ &= A|G(\epsilon^{j\omega T})| rac{\epsilon^{j(\omega kT \ + \ heta)} - \epsilon^{-j(\omega kT \ + \ heta)}}{2j} \ &= A|G(\epsilon^{j\omega T})| \sin(\omega kT \ + \ heta) \end{aligned}$$

where $\theta = \angle [G(\epsilon^{j\omega T})]$.

• The output is the same frequency sinusoid as the input, but scaled by $|G(e^{j\omega T})|$ and phase shifted by $\angle[G(e^{j\omega T})]$.

Stability Analysis Techniques ©2003 M.C. Ramos EE 233 UP EEE Department