Today’s EE 233 Lecture

Nyquist Criterion

e Nyquist criterion.

e Bode plots.

e Gain and phase margins.

e Frequency response interpretation.
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Nyquist Criterion

e Consider the following systems.

R(s) +

Ct) R4 c(s)
O G(s >
: to— s}

H(s)

continuous-time system discrete-time system

e The transfer function for the continuous-time system is
Cls) _  Gpls)
R(s) 1 + Gp(s)H(s)
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Nyquist Criterion

e The transfer function for the discrete-time system is
C*(s) _ G*(s)
R*(s) 1 + [GH]*(s)

e The characteristic equation for the CT system is
1 + Gp(s)H(s) = O

The continuous-time system is stable if all poles are in
the LHP.
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e The characteristic equation for the discrete-time system
is
1 + [GH]*(s) = 0

The discrete-time system is stable if all poles are in the
LHP.

e The discrete-time system characteristic equation may
also be written as

1 + [GH](z) = 0

In this form, the system is stable if all the poles are
inside the unit circle.
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Nyquist Criterion

e Based on Cauchy’s principle of the argument.

e Theorem. Let f(z) be the ratio of two polynomials in z.
Let the closed curve C in the z-plane be mapped into the
complex plane through mapping f(z).

If f(z) is analytic within and on C, except at a finite
number of poles, and if f(z) has neither poles nor zeros
on C, then

N =272 — P

where Z and P are the number of zeros and poles of
f(2) in C, respectively. N is the number of
encirclements of the origin, taken in same sense as C.
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Nyquist Criterion

e We map the contour using the open-loop function
Gp(s)H(s). This is the same as plotting Gp(s)H(s) on
the complex plane for —joo < s < joo. This plot is
commonly known as the Nyquist diagram.

e We then count the number of clockwise encirclements IN
of the point —1 + 30 by the mapped contour. Then,

N =2 —-P =2 =N+ P

From the Nyquist criterion, Z is number of zeros of the
characteristic equation in RHP and P is the number of
poles of the open-loop function in the RHP.

Thus, for stability, Z must be zero.
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Nyquist Criterion

e How do we use this? Let us refresh our memories by
considering an analog system.

e The closed curve C is selected to encompass the entire
RHP. This is the Nyquist path.

8 = +joo 8 = +4joo 8 = +joc
imag imag imag
infinity infinity infinity
w=~0 w=20 w=0
1 real ] real 1 real
s-plane s-plane s-plane
CruP P CrupP P CruP P
8§ = —joo 8§ = —joo 8§ = —joo
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Nyquist Criterion

e Example 1. Consider the continuous-time system below
and the corresponding Nyquist diagram of the open-loop
TF for k£ = 1.

Nyquist plot

k
s(s + 1) ° T —= T
s 1 i ey
—w
10 + + H
12 4 e 95 o4 o2 o o2 o o8 os

The Nyquist diagram extends all the way to oo.

e N = 0 since there are no encirclements of —1 4 30.
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Nyquist Criterion

Nyquist Criterion

® Also, P = 0 since the open-loop TF has no poles in the
RHP. Thus,

Z=N + P =0

Thus, the system is stable.

e It can be shown the system is also stable for any k > 0.
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Nyquist Criterion

e Example 2. Now consider the following.

R(s)+
G(s)
_T—;ﬂ s
H(s) =

The Nyquist diagram may be generated by using the
same technique for continuous-time systems on
[GH]*(s). This involves sorting out two issues.

C(s)

Characteristic equation.

1 + [GH]*(s) = 0

e First, [GH]*(s) is periodic in s with period jws. Thus,
we need only plot [GH|*(jw) for —ws/2 < w < ws/2
in order to get the frequency response.
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z-plane Nyquist Diagram

e Second, [GH|*(jw) is an infinite series given by

GHI'Gw) = o Y. GH(jw + jnws)

n=-—oc

Physical systems are generally low-pass, thus a few
terms of [GH|*(jw) may be sufficient to approximate
the function.

e Thus, an approximate Nyquist diagram may be
generated without necessarily getting the z-form of the
TF.
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z-plane

v
7
unit circle

e Since we are interested in the unit circle for the z-plane,
the Nyquist path is the unit circle tranversed in the
CCW direction.

A modification is introduced to the path if the the

e The Nyquist diagram in
the z-plane can alsoc be
generated.

open-loop function has pole at z = 1.
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z-plane Nyquist Diagram z-plane Nyquist Diagram

e Apply Cauchy’s principle of the argument e Observe in general that 1 4+ [GH]|(z) have the same
N = —(Z; — P) orders for the numerator and denominator. Thus,
where Z; and P; are the zeros of the characteristic Zo + Zi = FPot B = Zi — B =P -2
equation and the poles of the open-loop function,
respectively, inside the unit circle. e This gives N = Z, — P, which we write as our

N is the number of clockwise encirclements of —1 of the Nyquist criterion for z-plane

map of [GH]|(z). N =Z-P=2Z=N+P
e We want to know zeros and poles outside the unit circle. where N = clockwise encirclements of —1, Z =

Let Z, and P, be the zeros of the characteristic equation zeros of the characteristic equation cutside the unit

and the poles of the open-loop function, respectively, circle, and P = poles of the open-loop function (poles

outside the unit circle. of the characteristic equation) outside the unit circle.
E P EEE Dot A R FER Drpartmont

z-plane Nyquist Diagram z-plane Nyquist Diagram
e Example 3. Determine the stability of the following. e From the Nyquist criterion,
R(s) + r 1 C(S) Z = N + P = 0
= e [T
Y S ° The system is stable.
The open-loop function is Nyquist plot e If a forward gain k is added, the system will be unstable
at gain k = 1/0.418 = 2.39.
0.368z + 0.264 ) )
G(z) = I 0.366 : However, for the same system but without sampling, the
(z — 1)(z — 0.368) — system is stable for any k > 0.
o

From G(z), P = 0. . o —

From the Nyquist plot, / - e Destabilizing effect of sampling can be traced to the

N = 0. T phase lag introduced by the sampler and data hold.
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Bode Plots Standard Bode Plots

e Bode plots for continuous-time systems can be exact or e Pure gain.
aymptotic.
k>0
. . . . . Magnitude Plot Ph Plot
e Asymptotic plots (straight-line approximations of exact i
plots) are convenient to use for analysis and design. 20logk 0
= 3
J 3
e Need w-plane transfer function of discrete-time system g 2
. . . =
to use Bode plots in analysis and design. &
. 0.1 1 10 0.1 10
e An advantage of Bode plots is that Bode plots of w (rad/s) w (rad/s)
individual factors can first be generated and then added
to get the Bode plot of the entire TF.
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Standard Bode Plots Standard Bode Plots
e Poles and zeros at the origin. e Poles on the real axis.
n
1 m (—p)
poles : — Zercs : 8 — p <0
™ (s — p)
Magnitude Plot Phase Plot Magnitude Plot Phase Plot
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Standard Bode Plots

e Zeros on the real axis.

(s — 2)"
Y L 2 < 0
(—2)"
Magnitude Plot Phase Plot
60 270
n =3
o 40 /% < 180
3 V4 I n = 2
@ S A
7
g 20 & S 90 ;
10 o - = be ] ' n =1
0 e ] o
0.1|z| |z| 10|z| 0.01]z] 0.1]z| B 10|z|  100|z|
w (rad/s) w (rad/s)
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Bode Plots

e Example 4. Draw the Bode plots for the system in the
previous example.

Performing bilinear transformation,
0.0381(w — 2)(w + 12.14)

G(w) =
(w) w(w + 0.924)
Gliwn) 0.0381(jww — 2)(Jww + 12.14)
W) = —
I jww(jww + 0.924)
W ) W
Jw ) (2w g
_ 2 12.14
. jww
W [ —— + 1
J u’(0.924 + )
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Standard Bode Plots

e Complex conjugate poles.

2
wWn

82 4+ 2¢wps + w%’

wp > 0and0 < ¢ < 1

20 Magnitude Plot Phase Plot
¢ = 01 o
=1
0 - 5 < ¢ =0
g <=1 3
@ _20 g —90
e 2
—A4
0 —180
C.1wy, Wn 10wy, 0.0lw, 0.1w, Wn 10w, 100w,
w (rad/s) w (rad/s)
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Bode Plots

e Magnitude and phase plots.

magnitude plot phase plot
“ ) ! 180 [rerevseesreoniiiy;
SO PG AN & S NN 1 S e 171 R NN S R L B e & 2% S
O T 0 N U T i < ey
< y
=0 2
2 ~ :
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g P2 90
444444 21 —
0
asymptotic e
actual
0

Wy W

e What are the corner frequencies? What are the gain and
phase margins?
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Bode Plots

Gain-phase Plot

e In practice, Bode plots are simple to generate using
software packages such as Octave.

e Frequency response can be calculated directly from
[GH]*(s) or [GH](z). We can get w-plane frequency

response using
2 g wT
wy = —tan|—
YT 2

It is not necessary to get G(w) in this case.
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Frequency Response Interpretation

e The gain-phase plot presents the same information in
the Bode plots in a different form.

Gain-phase plot graphs the gain versus the phase for
different frequencies.

gain-phase plot

/

e Gain-phase plot for - /
previous example. Q.

2

Jww) —

phase
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Frequency Response Interpretation

e Physical interpretation of frequency response of
continuous-time systems is well discussed in basic
control courses.

How does the frequency response of a discrete-time
system relate toc the physical system response?

e Consider the system
C(z) = G(z)E(2)

with a sampled sine wave input of magnitude A and
frequency w.
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e Thus,
B _ ZlAsinwt] — zAsinwT

(2) = Z[Asinwt] = (= — aoT)(z — e—doT)
and

Clz) = G('z)zAsian '

(z — GJwT)(z et G—JwT)
ki1z koz
= g@T T, = e=jwT T Ca(z)

where Cg(z) are terms attributed to the poles of G(z),
and k1 and ks are constants.
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Frequency Response Interpretation

Frequency Response Interpretation

e Solving for ki and ks,

_ GE“T)AsinwT AG(ej‘*’T)

edwT — e=jwT 25
G(eI9T) A sin wT G(e—IvT)
ko = . . = A—/———
e—JwT _ gwT 27

e Taking the inverse z-transform of C(z), we get
o(kT) = ki(?“T)* + ky(e?*T)E + 271Ca(2)]

With a stable system, Z~1[Cg(z)] — Oast — O.
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Summary

e Nyquist criterion applies to discrete-time systems too.
But we have a different Nyquist path.

e Bode plot techniges for continuous-time also useful for
discrete-time. We need to do a bilinear transform.

e Gain and phase margins have same definition as in the
analog world. We can extract them from the Nyquist
plot or Bode plots in the same manner.

e Frequency response. Expecting something different?
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e Loocking at the steady-state output of the system and
assuming that G(z) is stable,

css(KT) = ki(9“T)F 4 ko(e—I@T)k
) eJ(WKT + 6) _  —j(wkT + 6)
= A|G(J¥T)|

25
= A|G(T)|sin(wkT + 6)

where 6 = /[G(e7¥T)].

e The output is the same frequency sinuseid as the input,
but scaled by |G(e/“T)| and phase shifted by £[G(e*T)].
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