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Today’s EE 233 Lecture

• Stability analysis and concept of stability.

•Bilinear transformation.

•Routh-Hurwitz criterion.

• Jury’s stability test.

•Root locus.
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Stability Analysis Techniques

• Stability techniques for LTI continuous systems are also
applicable for LTI discrete systems.

• Some modifications to the following techniques.

– Routh-Hurwitz criterion

– root locus

– frequency response methods
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Concept of Stability

•Consider the
following LTI
system.

R(s) C(s)

T

G(s)

H(s)

+

−

C(z) =
G(z)R(z)

1 + [GH](z)
=

K
m
∏

(z − zi)

n
∏

(z − pi)

R(z)

where zi are zeros and pi are poles of the transfer
function.
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Concept of Stability

•Using partial fraction expansion (assuming distinct
poles),

C(z) =
k1z

z − pi
+ . . . +

knz

z − pn
+ CR(z)

where CR(z) are the terms due to the poles of R(z). The
first n terms are the natural response terms of C(z).

•The system is stable if the natural responses (inverse
z-transform) tend to zero as time increases.
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Concept of Stability

•The inverse z-transform of the ith term is

Z−1
[

kiz

z − pi

]

= ki(pi)
k

If |pi| < 1, the term approaches zero as k goes to ∞.

• Since the (z − pi) factors originate from the
characteristic equation, i.e.,

1 + [GH](z) = 0

the system is stable if all roots of the equation are inside
the unit circle in the z-plane.
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Concept of Stability

•Alternatively, we can look at

1 + [GH]∗(s) = 0

Since the inside of the z-plane unit circle corresponds to
the left half of the s-plane, the roots of the above
equation must be in the LHP for stability.

• If a root of the characteristic equation has unity
magnitude (i.e., pi = 1∠θ), the natural response
neither grows nor decay.

This is a marginally stable system.
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Concept of Stability

•The concept of stability (and the stability condition)
may be extended to system with repeated poles.

•What if the system transfer function cannot be derived?
What is the characteristic equation? Consider

C(s)

T

G1(s) G2(s)

R(s) E1 E∗
1 +

+
++

−−
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Concept of Stability

•The output expression is

C(z) =

[

1

2 + G2
R

]

(z)

+

[

G1G2

2 + G2

]

(z)

1 +

[

G1G2

2 + G2

]

(z)

[

1 + G2

2 + G2
R

]

(z)

What part of the C(z) denominator does not contain the
input R term?
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Concept of Stability

•The part of C(z) denominator independent of input R is

1 +

[

G1G2

2 + G2

]

(z)

This function (set equal to zero) is taken as the
characteristic equation.

•Alternatively, we may derive the characteristic equation
by

– setting input R(s) to zero,

– opening the sampler, and

– deriving the transfer function at the open.
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Concept of Stability

•For the example, the resulting SFG is

Eo

E∗
i

C
G1 G2

1

1

−1

−1

•By Mason’s gain formula

Eo(s) =
−G1G2

2 + G2
E∗
i (s)

Stability Analysis Techniques

EE 233

c©2003 M.C. Ramos

UP EEE Department

EE 233

Concept of Stability

•Taking the z-transform gives

Eo(z) = −

[

G1G2

2 + G2

]

(z)Ei(z)

•Denote the open-loop TF as

Gop(z) =
Eo(z)

Ei(z)
= −

[

G1G2

2 + G2

]

(z)

• Since we are looking at the sampler, for a closed-loop
system, Ei(z) = Eo(z).
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Concept of Stability

• In general, Eo(z) 6= 0, thus

1 − Gop(z) = 0

This is our general expression for the characteristic
equation.

•For the example, the characteristic equation is

1 +

[

G1G2

2 + G2

]

(z) = 0

which is the same as our previous result.
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Concept of Stability

•Example 1. Consider the following system.

C(s)

T T

G1(s) G2(s)

H(s)

R(s) ++

−−

The SFG with the first sampler opened

Eo E∗
i E2 E∗

2 CG1

−H

G21

−1

E2 = G1E
∗
i − G2HE∗

2
Eo = −G2E

∗
2
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Concept of Stability

• Solving for E∗
2

E∗
2 =

G∗
1E

∗
i

1 + [G2H]∗

Using the second equation, we get

E∗
o =

−G∗
1G

∗
2

1 + [G2H]∗
E∗
i

• Since Ei(z) = Eo(z) in the closed-loop system,
[

1 +
G1(z)G2(z)

1 + [G2H](z)

]

= 0
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Concept of Stability

•Thus, the characteristic equation can be written as

1 + G1(z)G2(z) + [G2H](z) = 0

•The characteristic equation may also be derived by
opening the system at the second sampler.
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Concept of Stability

• In general, the characteristic equation of a discrete
system may be expressed as

1 + F (z) = 1 − Gop(z) = 0

where Gop(z) is the open-loop transfer function.
Function F (z) is termed the open-loop function
(important in analysis and design).

•For the simple feedback system,

[GH](z) is the open-loop function
and −[GH](z) is the open-loop TF.

R(s) C(s)

T
G(s)

H(s)

+

−
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Concept of Stability

•The characteristic equation may be calculated from the
state-space model.

x(k + 1) = Ax(k) + Br(k), y(k) = Cx(k) + Dr(k)

It was shown that the corresponding transfer function is

Y (z)

R(z)
= C[zI − A]−1B + D

•The denominator of the transfer function is |zI − A|,
and thus the characteristic equation is

|zI − A| = 0
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Bilinear Transformation

•For continuous-time systems, stability ⇔ poles in the
LHP.

•The imaginary axis in the s-plane is the boundary for
stability.

Analysis techniques such as

–Routh-Hurwitz

– Bode plot methods

are based on this stability property.
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Bilinear Transformation

• In discrete-time systems, the unit circle in the z-plane is
the boundary. Cannot directly apply continuous-time
techniques to discrete-time.

•Use transformation to map z-plane unit circle to the
w-plane imaginary axis.

z =
1 + (T/2)w

1 − (T/2)w
⇒ w =

2

T

z − 1

z + 1
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Bilinear Transformation

•Map the z-plane unit circle z = ǫjωT .

w =
2

T

z − 1

z + 1

∣

∣

∣

∣

z=ǫjωT
=

2

T

ǫjωT − 1

ǫjωT + 1

=
2

T

ǫjωT/2 − ǫ−jωT/2

ǫjωT/2 + ǫ−jωT/2
= j

2

T
tan

ωT

2

•Mappings between s-plane, z-plane and w-plane.

•LHP is the stable region in the w-plane.
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Bilinear Transformation

•Let ωw be the w-plane frequency such that
jωw = ℑ(w).

The s-plane and w-plane frequencies are related by

ωw =
2

T
tan

ωT

2

For small real frequency ω, i.e., ωT is small,

ωw =
2

T
tan

ωT

2
≈

2

T

(

ωT

2

)

= ω

The w-plane and s-plane frequencies are approximately
equal.
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Bilinear Transformation

•The approximation is valid for ω such that
tan(ωT/2) ≈ ωT/2. The error is within 4% for

ωT

2
≤

π

10
⇒ ω ≤

2π

10T
=

ωs

10

We use this to choose the appropriate sampling rate. We
like that ω ≪ ωs/10 for the frequencies of operation
(system bandwidth).

•At ω = ωs/10, the zero-order hold introduces a phase
lag of 18o.

We will see how this affects system stability (next).
Stability Analysis Techniques

EE 233

c©2003 M.C. Ramos

UP EEE Department

EE 233

Routh-Hurwitz Criterion

•Used to determine how many roots of the characteristic
equation are in the RHP.

Useful for stability analysis of continuous-time systems.

•For discrete-time systems, we must first apply the
bilinear transform to determine stability using R-H.

•Write the characteristic equation in the following form.

a0w
n + a1w

n−1 + . . . + an−1w + an = 0
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Routh-Hurwitz Criterion

•Routh-Hurwitz (R-H) table.

wn : a0 a2 a4 . . .

wn−1 : a1 a3 a5 . . .

wn−2 : b1 =
a1a2 − a0a3

a1
b2 =

a1a4 − a0a5

a1
. . . . . .

wn−3 : c1 =
b1a3 − a1b2

b1
. . . . . .

... ... ...

... ... ...

w1 : d1 = . . . d2 = . . .

w0 : e1 = . . .
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Routh-Hurwitz Criterion

•The Routh-Hurwitz stability criterion states that
the number of roots with positive real parts is equal to
the number of sign changes of the coefficients in the first
column of the table.

• Suppose that the wi−1th row contains only zeros. Let
α1, α2, . . . be the coefficients of the with row. Then the
equation

α1w
i + α2w

i−2 + α3w
i−4 + . . . = 0

is a factor of the characteristic equation.
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Routh-Hurwitz Criterion

•Review. Consider the system characteristic equation

w3 + w2 + 2w + 24 = 0

R-H table format.

w3 : 1 2

w2 : 1 24

w1 :
1 · 2 − 1 · 24

1
= − 22

w0 :
−22 · 24 − 1 · 0

−22
= 24

• Since there is at least one sign change in the first row of
the R-H table, the system is unstable.
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Routh-Hurwitz Criterion

•Example 2. Consider the following system.

C(s)

T

1 − ǫ−Ts

s

K

s(s + 1)

R(s) +

−

With T = 0.1 s, what is the range of K for stability?

•The open-loop TF is

G(s) =
1 − ǫ−Ts

s

1

s(s + 1)
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Routh-Hurwitz Criterion

•From z-transform tables,

Z

[

a

s2(s + a)

]

=
z[(aT − 1 + ǫ−aT )z + (1 − ǫ−aT − aTǫ−aT )]

a(z − 1)2(z − ǫ−aT )

•The z-transform of G(s) is then given by

G(z) =
z − 1

z
Z

[

1

s2(s + 1)

]

=
0.00484z + 0.00468

(z − 1)(z − 0.905)
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Routh-Hurwitz Criterion

•Using the bilinear transform,

G(w) = G(z)|
z=

1 + (T/2)w
1 − (T/2)w

= G(z)|
z=1 + 0.05w

1 − 0.05w

G(w) =
−0.00016w2 − 0.1872w + 3.81

3.81w2 + 3.80w

•The characteristic equation is

0 = 1 + KG(w)

= (3.81 − 0.00016K)w2 + (3.80 − 0.1872K)w

+ 3.81K
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Routh-Hurwitz Criterion

•R-H table.

w2 : 3.81 − 0.00016K 3.81K ⇒ K < 23813

w1 : 3.80 − 0.1872K ⇒ K < 20.3

w0 : 3.81K ⇒ K > 0

•Thus, for stability, K should be

0 < K < 20.3
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Routh-Hurwitz Criterion

•Example 3. What is the range of K for stability for a
sampling period of T = 1 s.

From a previous example,

G(z) =
0.368z + 0.264

z2 − 1.368z + 0.368

•The characteristic equation is

0 = 1 + KG(w) = 1 + K G(z)|
z=1 + 0.5w

1 − 0.5w

= 1 +
−0.0381K(w − 2)(w + 12.14)

w(w + 0.924)
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Routh-Hurwitz Criterion

•Thus,

0 = (1 − 0.0381K)w2 + (0.924 − 0.386K)w

+ 0.924K

•R-H table.

w2 : 1 − 0.0381K 0.924K ⇒ K < 26.2

w1 : 0.924 − 0.386K ⇒ K < 2.39

w0 : 0.924K ⇒ K > 0

For stability ⇒ 0 < K < 2.39.
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Routh-Hurwitz Criterion

•We can see how the sampling period affects stability.

T = 0.1 s, system is stable for 0 < K < 20.3.

T = 1 s, system is stable for 0 < K < 2.39.

Stability suffers with increasing sample period T (slower
sampling rate).

•The system is marginally stable at K = 2.39.

To find the (real) frequency of oscillation, first find the
w-plane frequency ωw at which the system is marginally
stable.
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Routh-Hurwitz Criterion

•At K = 2.39 the w1 row of the R-H table is zero. Thus,
the w2 row gives a factor of the characteristic equation.

0 = [(1 − 0.0381K)w2 + 0.924K]K=2.39

= 0.9089w2 + 2.181

⇒ w = ±j1.549

•Thus ωw = 1.549 and the corresponding s-plane
frequency is

ω =
2

T
tan−1 ωwT

2
=

2

1
tan−1 (1.549)(1)

2
= 1.32 rad/s
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Jury’s Stability Test

•R-H criterion cannot be directly applied to determine
the stability of discrete-time systems.

Bilinear transform is manageable for systems with low
order. Tedious for high-order systems (maybe).

•What we want is a stability test that we could directly
use on our z-function characteristic equation.

Let us now look at Jury’s stability test. Write the
characteristic equation as

Q(z) = anz
n + an−1z

n−1 + . . . + a1z + a0 = 0

where an > 0.
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Jury’s Stability Test

•Array for Jury’s stability test.

z0 z1 z2 . . . zn−k . . . zn−1 zn

a0 a1 a2 . . . an−k . . . an−1 an
an an−1 an−2 . . . ak . . . a1 a0
b0 b1 b2 . . . bn−k . . . bn−1
bn−1 bn−2 bn−3 . . . bk−1 . . . b0
c0 c1 c2 . . . cn−k . . .
cn−2 cn−3 cn−4 . . . ck−2 . . .
... ... ... ... ...
l0 l1 l2 l3
l3 l2 l1 l0
m0 m1 m2
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Jury’s Stability Test

•The elements of the even-numbered rows are the
elements of the preceeding row in reverse order.

The elements of the odd-numbered rows are

bk =

∣

∣

∣

∣

a0 an−k
an ak

∣

∣

∣

∣

, ck =

∣

∣

∣

∣

b0 bn−1−k
bn−1 bk

∣

∣

∣

∣

,

dk =

∣

∣

∣

∣

c0 cn−2−k
cn−2 ck

∣

∣

∣

∣

, . . .

•Remarks.

– a second-order system has only one row.

– for each additional order, two additional rows are
added to the array.
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Jury’s Stability Test

•The necessary and sufficient conditions for Q(z) to have
no roots outside or on the unit circle, with an > 0, are

1. Q(1) > 0, (−1)nQ(−1) > 0, |a0| < an

2. |b0| > |bn−1|, |c0| > |cn−2|, . . . |m0| > |m2|

• In an nth-order system, there are n + 1 constraints.

• It may not be necessary to form the whole array.

– check that condition 1 holds before forming the array.

– proceed a row at a time while checking condition 2.

– stop if any condition is not satisfied.
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Jury’s Stability Test

•Example 4. Use Jury’s stability test to solve the
previous example.

•Characteristic equation.

0 = 1 + KG(z) = 1 + K
0.368z + 0.264

z2 − 1.368z + 0.368
= z2 + (0.368K − 1.368)z + 0.368 + 0.264K

• Jury array (do we actually need it?).

z0 z1 z2

0.368 + 0.264K 0.368K − 1.368 1
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Jury’s Stability Test

• Impose the constraints for stability.

– constraint Q(1) > 0.

12 + (0.368K − 1.368)(1) + 0.368 + 0.264K > 0

0.632K > 0

K > 0

– constraint (−1)2Q(−1) > 0.

0.104K < 2.736

K < 26.3

– constraint |a0| < a2.

0.368K + 0.264 < 1 ⇒ K <
0.632

0.264
= 2.39
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Jury’s Stability Test

•Thus, the system is stable for 0 < K < 2.39. The
system is marginally stable at K = 2.39.

•The characteristic equation at this K is

0 = z2 + (0.368K − 1.368)z

+ 0.368 + 0.264K|K=2.39

= z2 − 0.488z + 1

The roots are

z = 0.244 ± j0.970 = 1∠ ± 75.9o

= 1∠ ± 1.32 rad = 1∠ ± ωT

Thus, at T = 1, the real frequency ω = 1.32 rad/s.
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Jury’s Stability Test

•Example 5. Apply Jury’s test to a system with the
characteristic equation

Q(z) = z3 − 1.8z2 + 1.05z − 0.20 = 0

•Test the first set of conditions.

Q(1) = 1 − 1.8 + 1.05 − 0.20 = 0.05 > 0

(−1)3Q(−1) = (−1)(−1 − 1.8 − 1.05 − 0.20)

= 4.05 > 0

|0.20| < 1
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Jury’s Stability Test

•Construct the Jury array.

z0 z1 z2 z3

−0.2 1.05 −1.8 1
1 −1.8 1.05 −0.2
b0 b1 b2

where

b0 =

∣

∣

∣

∣

−0.2 1
1 −0.2

∣

∣

∣

∣

, b1 =

∣

∣

∣

∣

−0.2 −1.8
1 1.05

∣

∣

∣

∣

,

b2 =

∣

∣

∣

∣

−0.2 1.05
1 −1.8

∣

∣

∣

∣

Thus, |b0| = 0.96 > |b2| = 0.69.
Stability Analysis Techniques

EE 233

c©2003 M.C. Ramos

UP EEE Department

EE 233

Jury’s Stability Test

• Since all constraints are satisfied, the system is stable.

•We can verify this by factoring Q(z) as

Q(z) = (z − 0.5)2(z − 0.8) = 0

and seeing that roots are all inside the unit circle.
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Jury’s Stability Test

•Example 6. Given a closed-loop system with a PI
compensation. Determine the range of KP for stability
if KI = 100T and T = 0.1 s.

D(z) = KP +
KIz

z − 1
G(z) =

1 − ǫ−T

z − ǫ−T

•Characteristic equation.

0 = 1 + D(z)G(z)

= 1 +
(KP + KI)z − KP

z − 1

1 − ǫ−T

z − ǫ−T

= z2 − [(1 + ǫ−T ) − (1 − ǫ−T )(KI + KP )]z

+ ǫ−T − (1 − ǫ−T )KP
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Jury’s Stability Test

• Simplifying, our characteristic equation is

0 = z2 − (0.953 − 0.0952KP )z + 0.905 − 0.0952KP

• Jury array (just for completeness).

z0 z1 z2

0.905 − 0.0952KP 0.953 − 0.0952KP 1

• Stability constraint Q(1) > 0 gives

1 − 0.953 + 0.0952KP + 0.905 − 0.0952KP > 0

which is satisfied for any KP .
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Jury’s Stability Test

• Stability constraint (−1)2Q(−1) > 0 yields

1 + 0.953 − 0.0952KP + 0.905 − 0.0952KP > 0

If KP > 0 (which is usually the case),
0 < KP < 15.01.

• Stability constraint |a0| < a2 results in

|0.905 − 0.0952KP | < 1 ⇒ KP < 20.0

•Thus, KP < 15.01 for stability.
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Root Locus

•Consider the LTI sampled-data system.

C(s)

T

G(s)

H(s)

R(s)

K
+

−
C(z)

R(z)
=

KG(z)

1 + K[GH](z)

•The root locus of the system is the plot (in the z-plane)
of the roots of the characteristic equation

1 + K[GH](z) = 0

as K is varied from 0 to ∞.

•We can use the s-plane root locus construction
techniques for the z-plane locus.
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Root Locus

•Example 7. Consider the system in example 4.

KG(z) =
0.368K(z + 0.717)

(z − 1)(z − 0.368)

•From the root locus basics,

– the locus originates at z = 1, 0.368.

– the locus terminates at z = − 0.717 and z = ∞.

– there is one asymptote at 180o.

– the breakaway points obtained from the solution of
d

dz
[G(z)] = 0
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Root Locus

•The breakaway points are at z = 0.65 (K = 0.196)
and z = − 2.08 (K = 15.0).

•Root locus.
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Root Locus

•The intersection with the unit circle may be found by
using stability test (RH or Jury), or by graphical
inspection (rlocfind).

•From the RH criterion, the system is marginally stable
for K = 2.39.

The characteristic equation at this gain is

z2 − 0.488z + 1 = 0

Thus, the locus intersects the unit circle at
z = 0.244 ± j0.970.
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Root Locus

•The intersection can also be determined graphically.

Once we figure out z at the intersection, we can use this
in our characteristic equation

1 + K[GH](z) = 0

and solve for K that satisfies the equation.

•Alternatively, from the characteristic equation, we get

K[GH](z) = − 1 ⇒ |K[GH](z)| = 1
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Root Locus

•Using the general form of [GH](z),

|[GH](z)| =
|z − z1| · . . . · |z − zm|

|z − p1| · . . . · |z − pn|

We can look at the |z − zi| (or |z − pi|) terms as
distances from point z to zi (or pi).

•We can measure the distances from the graph, determine
|[GH](z)|, and finally determine the gain K as

K = 1/|[GH](z)|

(taking K as a positive, which is usually the case).
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Root Locus

•Applying this technique to our
example,

K =
P1 · P2

0.368Z1

From the figure, Z1 = 1.36,
P1 = 1.23 and P2 = 0.98.
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•This gives K = 2.4.
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Root Locus

•Example 8. Find the range of K for stability.

C(s)

T = 1 s

1 − ǫ−Ts

s

K

s2
1 + 2s

PD controller plant

R(s) +

−

•The open-loop TF is

KG(s) =
1 − ǫ−Ts

s
·
K(1 + 2s)

s2

Stability Analysis Techniques

EE 233

c©2003 M.C. Ramos

UP EEE Department

EE 233

Root Locus

•The z-transform is

KG(z) =
5z − 3

2(z − 1)2
=

2.5K(z − 0.6)

(z − 1)2

•Root locus.

Point A is at z = − 1.

Thus, to find the gain K at
point A, we solve

1 + KG(z) = 0

at z = − 1.
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Root Locus

• Solving for K.

1 +
2.5K(z − 0.6)

(z − 1)2

∣

∣

∣

∣

z = −1

= 0

2.5K(−1.6)

(−2)2
= − 1 ⇒ K = 1

•Thus, the system is marginally stable at K = 1.
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Summary

•Concept of stability in discrete-time.

•Bilinear transformation.

•Routh-Hurwitz criterion and Jury’s stability test.

•Root locus.
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