Today’s EE 233 Lecture

e Time response of a discrete-time system.

e System characteristic equation.

e Mapping between the s-plane and z-plane.

e Steady-state error.
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Time Response Characteristics

e From the closed-loop systems discussion, we know

G(z) R(2)

A )

e Using the residue technique, G(z) may be computed for
T = 0.1 s as

G(Z)ZZ1—6—TS 4}:z—lz[ 4 }

s s + 2 z s(s + 2)
oz —1 21 — 2T _0.3625
z (z — 1)(z — e2T) 2 — 0.8287
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Time Response Characteristics

e The time response of discrete-time systems will be
investigated by the use examples.

For better appreciation, the response of a discrete-time
system will be comapared to the response of a
continuous-time system.

e Example 1. Consider the unit step response of the
following closed-loop system with a first-order system
plant.

R&) 1 B , B[ - | EG) C(s)
k] o 8 o
— T =0.1s
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Time Response Characteristics

e Thus, the closed-loop TF is
G(z) _ 0.3625
1 4+ G(z) =z — 0.4562

e Since we have a unit step input, R(z) = N and
0.3625 z 0.667z —0.667z
C(z) = . =
z — 04562 z — 1 z — 1 z — 0.4562
c(kT) = 0.667[1 — (0.4562)F]
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Time Response Characteristics

o If we considered the system as purely continuous, i.e., no
sampling, the cutput response to a unit step input is

G 1 4
p(s) where Gp(s) =

C(s) =

1 + Gp(s) s s + 2
e Thus,
~ 4 0.67 —0.667
C(s) = =
s(s + 6) S s + 6
&(t) = 0.667 (1 _ e—ﬁt)
By e Gl S —
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Time Response Characteristics

e With some efftort, the output of the discrete-time
system for all time ¢ may be computed. Again, from the
discussions on closed-loop systems,

e Since, the starred transform is essentially the
z-transform with z = (—:Ts, for the unit step input
z 1
R(z) = =
(2) z — 1 1 — 21

R*(s) = (1 — e T5)~1
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Time Response Characteristics

e The output can be written as
41 — e_Ts)[ R*(s) }
s(s + 2) [1 4+ G*(s)

C(s) =

~ s(s 4+ 2) [1 +1G(z)L:6Ts

e Denote the first factor of C(s) as Cy(s). Thus,

Ci(s) = 4 _2 2
18_3(3—{—2)_3 s + 2

c1(t) = 21 — %)
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e Locking at the second factor in the cutput expression,
1 1 z — 0.8187

1+ G(2) + 0.3625 > _— 0.4562
z — 0.8187

=1 — 0.363z~1 — 0.165272 —

Note that the z7% factor generates a delay of kT.

e Performing the z = €% substitution, we get

C(s) = Ci(s)[1 — 0.363¢" 15 — 0.165e 215 — .. ]
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Time Response Characteristics

e The continuous-time ocutput function is then
c(t) = 2{(1 — 2y — 0.363[1 — e 2Dyt — T)
— 0.165[1 — e 20=2Dy ¢ — 21) — }

e To check our result, let us evaluate at ¢ = 27T'. Since
T = 0.1 s,

c(2T) = 2(1 — € %% — 0.726(1 — ¢ 92) = 0.5278

Check with the z-transform result.
c(2T) = 0.667[1 — 0.45622] = 0.5282
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Time Response Characteristics

e The output of the sampled-data system is the
superposition of delayed step responses.

B Sampled-data system output

e It is usually difficult to P S -

analytically determine the | S
continuous-time response
of a sampled-data system.

sampled-data system |

N\

continuous-time equivalent |

c(t)

Simulations are often used
if the continuous-time
response is needed.
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Time Response Characteristics

e DC gain of the sampled-data system.
From the final-value theorem,
lim_e(nT) = (2 = 1)C(2)],

_ G(z)
=@ - Ui ) (2) .
G(z) z
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e From our example, G(1) = 2. Thus,

lim e(nT) = = 0.667
n— 00 1 + 2
This agrees with our result for c(kT).
lim c¢(kT) = lim 0.667[1 — (0.4562)F] = 0.667
k—oo k—oo

e Since we have a constant input, our the steady-state
value for our sampled-system should match the DC gain
for a continuous-time unity gain feedback system with
plant Gp(s).
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Time Response Characteristics

Time Response Characteristics

e The DC gain expression for our CT system is
Gp(s)
1 4+ Gp(s)|,_,

For our plant, Gp(0) = 2. Thus,

2
DC gain = = 0.667
1+ 2

DC gain =

e For a stable system with a constant input, the output of
the DT system approaches a steady-state value.

The steady-state value may be evaluated from the

closed-loop TF at z = 1. This value is also equal to the
steady-state value of an analogous CT system.
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Time Response Characteristics

e Example 2. Consider the unit step response of the
following system.
G(s)

Re) + B o B[ | _ 2 | B 1 C(s)
s Sl st + 1) o
— T =138

e Again, from our closed-loop system discussions,

_ G(2)
=11 g@)t®

C(z)
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Time Response Characteristics

e From z-transform tables,

a
dr =
Z[(CLT — 1 + e_aT)z + (1 — eoT _ aTe_aT)]
a(z — 1)2(z — eoT)

e The z-transform of G(s) is then given by
G(z) = z — lz [ 1 }
z s2(s + 1)
0.368z 4+ 0.264
z2 — 1.368z + 0.368
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e The closed-loop pulse transfer function is then
G(z) _ 0.368z + 0.264

1 + G(z) 22 — z + 0.632

e Thus, for a unit step input,
2(0.368z + 0.264
Clz) = ( )

(z — 1)(z2 — z + 0.632)
— 0.3682~1 + 1.00272 + 1.4027% +

From the final-value theorem,

. . 0.632
lim ¢(nT) = lim(z — 1)C(z) = —— =1
n—oo z—1 0.632
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Time Response Characteristics

e With the use of simulations, the continuous response of
the sampled-data system is determined.

Sampled-data system output

The continuous-time
equivalent response is the
standard response of a
second-order analog

system with \
¢ =05and wy, =1

c(t)

sampled-data system

continuous-time equivalent

s
t

e Effect of sampling : the overshoot increases.
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Time Response Characteristics

e For £k < 0, assuming we have zero initial conditions and
since we have a step input, ¢(kT) = 0 and r(kT) = O.
From the difference equation, ¢(0) = 0 and
c(1) = 0.368.

For k > 2, our difference equation becomes

c(kT) = 0.632 + c[(k — 1)T] — 0.632¢[(k — 2)T]

e We can solve this difference equation by a simple
program.

However, we still need simulations to get the response
between the sampling points.
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Time Response Characteristics

e Another method of computing the unit step response is
by using difference equations.

We can write the closed-locop TF as
C(z)  G(z) _ 0.368z7! + 0.264272
R(z) 14+ G(z) 1 — z=1 4 0.632z—2

or
C(z)[1 — z7! + 0.632272] = R(2)[0.368z~ ! + 0.264272]

e Taking the inverse z-transform,
c(kT) = 0.363r[(k — 1)T] + 0.264r[(k — 2)T]
+ c[(k — 1)T] — 0.632¢[(k — 2)T]
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Characteristic Equation

R(s) C(s)
e Let us now consider 3 TH ) =
the following
closed-loop system. e |

e The general form of the response is

G(z)R(z) kH(z - Zi)R(z)

C(z) 1 + [GH|(z) ﬁ(z o)
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Characteristic Equation

e Using partial fraction expansion,

k k
Clz) = 2 4+ ... 4+ 1 c)
zZ — P Z — DPn

where CR(z) are the terms of C(z) that can be
attributed to the poles of R(z).

e The first n terms are the natural response of the system,
or the transient response (for stable systems).

The inverse z-transform of the :th term is of the form
k;z
zZ — p;
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Mapping s-plane to the z-plane

Characteristic Equation

e For continucus-time systems, we are able to tailor cur
system response to some performance specification by
moving the locations of the system poles.

e Can we do this with discrete-time systems?

e Consider an exponential function e(t) = e . We
know that
1
E(s) = —— and E*(s) = ———
() = () = e ——car
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e The poles p; determine the natural response of the
system. Note that the p; are the roots of the following
equation.

characteristic equation : 1 + [GH](z) = 0

e The roots of the characteristic equation are the poles of
the closed-loop transfer function.

In cases where the pulse transfer function cannot be
identified, the roots of the characteristic equation are
poles of C(z) that do not depend on the input function.
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Mapping s-plane to the z-plane

@ Recall the z-transform and starred transform.

z
E(z) = — ar
e A pole on the s-plane at s = — a corresponds to a pole
in the z-plane at z = e~ T,
In general, a pole of E(s) at s = s7 corresponds to a
pole of E(z) at z; = €517,
Conversely, an E(z) z-plane pole at z = 2z,

corresponds to an E(s) s-plane pole s; such that z; and
s1 are related by

21 = T
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Mapping s-plane to the z-plane

e Now lock at the imaginary axis of the s-plane, i.e.,

s = 0 4+ jw whereo =0and — 0 < w < o©
This corresponds to the z-plane as z = ST or
z = Td¥T = %l = coswT + jsinwT = 14(wT)

e Pole located on the s-plane imaginary axis are
equivalent to poles located on the z-plane unit circle.

Thus, z-plane poles on the unit circle means the system
response contains a steady-state oscillation with
/z
w = — rad/s
T

System Time Response Characteristics ©2002 M.C. Ramos
EE 233 UP EEE Department

Mapping s-plane to the z-plane

Mapping s-plane to the z-plane

e Constant damping lines in the s-plane map into circles
in the z-plane. Since o is constant for constant damping,

1T _jwT o1T
z = e’ = €71 L(wT)
o 3(2)
circle o
radius €T unit circle
s-plane z-plane
7 R(z)
o1 2}
circle
radius €727

System Time Response Characteristics R

EE 233 UP EEE Department

e We only need tc worry about the primary strip on the
s-plane.

. &3
Jw S(2) exterior region
. Ws unstable region
83 83 2
A s-plane z-plane
81 22 23 1\ =
” R(z)
86 25 24 26
A
84 85 W, interior region
— —]? stable region

The right-half part and the left-half part of the s-plane
map to the regions outside and inside the z-plane unit
circle, respectively.

System Time Response Characteristics ©2002 M.C. Ramos
EE 233 UP EEE Department

Mapping s-plane to the z-plane

e Constant frequency lines in the s-plane map into rays
extending from the origin at an angle wT. With w
constant,

or jw1T oT
z = €T = €71 L(w1T)
Jw F(2)
\Wg
2
jwa s-plane w.T z-plane
w T
Jwi R(z)
o
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Mapping s-plane to the z-plane

e Corresponding locations of s-plane and z-plane poles.

Jw (=)
s-plane
S10 Sy w 5
X-===X-=--4 j—
J 2
S 87 Se S5
X X X
83 Sz s1 S4
o
X X X
88 s7 S¢ S5
w,
R e el [
S10 Sy 2 unit circle
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Mapping s-plane to the z-plane

e Thus,
eonT — op CwpT = —lInr
Also,
which yields
¢ —Inr —Inr
1 — ¢2 6 VinZr + 62

Also,

1
Wn = T\/ln2r + 62
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Mapping s-plane to the z-plane

e We can also relate the s-plane pole locations for a
second-order transfer function to the z-plane.

Consider the second-order transfer function

w2

G = n
(5) s2 4+ 2¢wns + w%

with poles at

$1,2 — — Qwp = jwn\/l e C2

The z-plane poles are located at

z = 7T o, = el /[+w, T\/1 — ¢2] = r/[+6]
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Mapping s-plane to the z-plane

e The time constant 7 of the poles is
1 -T
T = _— = _—
Cwn Inr
This can also be expressed as

r = e L/7

e Thus, given the complex pole location in the z-plane, we
can find the damping ratio, natural frequency and time
constant of the pole.
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Mapping s-plane to the z-plane

e Example 3. From the previous example, with T' = 1s,
G(z) _0.368z + 0.264
1 + G(z) 22 — z + 0.632

e The characteristic equation is

0=22 — 2z + 0.632
= (2 — 0.5 — j0.618)(z — 0.5 + j0.618)

The poles are complex and located at

z = 0.5 % 50.618 = 0.795/%51.0° = 0.795410.890 rad
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Mapping s-plane to the z-plane

e Recall that for the purely analog closed-loop system
with the same plant,

¢ = 0.50 and w, = 1 rad/s

Also, 7 = 1/Cwn = 2 s.

e Thus, comparing values of ¢, w, and 7T for the discrete
and the analog systems, we can see that the sampling
has a destabilizing effect on the system.

However, if the sampling rate is increased (e.g.
T = 0.1 s), the effect of sampling is negligible.
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Mapping s-plane to the z-plane

e Since

z = T/ + 0T = r/+wT = 0.795/ 4+ 0.890 rad

Thus,

— In(0.795)

¢ = 0.250

g \/ln2(0.795) + (0.890)2

1
wn = I\/1112(0.795) + (0.890)2 = 0.9191

—1

= ——— = 4.36 s
In(0.795)
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Mapping s-plane to the z-plane

e What sampling rate is appropriate?

e We know that TF pole locations in s-plane transform
into z-place pole locations as

s+ 1/ >z — & 1/T
(s + 1/7)% + w? — 2ze T/7cos(wT) + e 2T/7
= (2 — z1)(z — #1)
where

21 = e V/medoT = e T/T/0T = rs6
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Mapping s-plane to the z-plane

e For the real pole, the s-domain time constant is 7.

For sampling to have negligible effect, T < T or
T/ € 1.

= z-plane pole will be near z = 1.

e For the complex pole, we have oscillations.

We additionally need T' small such that we have several
samples within a cycle, i.e., wWT < lorT <K T.

= Since z1Z1 = e_zT/T, then |z1| = e_T/T, z-plane
pole will be near z = 1.
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Mapping s-plane to the z-plane

Mapping s-plane to the z-plane

e Also z = r/ 4 60 where § = wT. Let T, be the
sinusoid period, then
2w Ty 2w

wl' = —T = 6 = =
Ty T 6

We can then see that as the number of samples per cycle
(T4/T) increases, 6 — 0.

eSincer — 1 and 8 — 0, we see that as the sampling
rate increases
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e In general, in discrete-time control, the z-plane poles
(roots of characteristic equation) are placed near z = 1
by using high sampling rates.

e Mathematically,
T 1

T Inr

The ratio 7/T is the number of samples per time
constant. We want this ratio to be large so that Inr is
small, thus, » — 1.
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Steady-state Accuracy

e One important characteristic of a control system is the
ability to track known inputs with minimum error.

e System designer usually assumes an input is of certain
form and minimizes the system error based on the
assumed input.
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Steady-state Accuracy

e Consider the system

R(s) + C(s)

Clz) Gz = 6l -
R(z) 1 + G(z) -7

e The plant transfer function G(z) = Z[G(s)] can be
written as

[1Gz — =)

G(z) = K >
(z — 1)NH(z — zj)

3 Zzj # 1
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Steady-state Accuracy

Steady-state Accuracy

e Let us now derive the steady-error for a unit step input.

z
R =
(2) = —
e From the final-value theorem,
. (2 — 1)R(z2)
= 1l — DE = 1
Css z1—>rnl(z ) (z) z1—>n%l 1 + G(Z)

provided that egs exists. Substituing R(z),
z 1

Iim — =
z=11 + G(2) 1 + lim1 G(z)
z—>

€sS =
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e The parameter NV is termed the system type.

e The system error e(t) is the difference between the
reference input and the system ocutput.

E(z) = Zle(t)] = R(z) — C(z2)

Substituting C(z) from the closed-loop TF expression,

G(z R(z
1 + G(2) 1 + G(2)
?;t;;xz; Time Response Characteristics l(]?QEOgQE)];C Ramos
y cpartment

Steady-state Accuracy

e Define the position error constant as
K, = lim G(z
p z—1 ( )

and the open-loop DC gain of the plant with all z = 1
poles removed as
m

KH(Z — %)

KdC = D
H(z — zj-)z=1

e Then, if N = 0 (i.e., G(z) does not have any poles at
z = 1), Kp == ch-
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Steady-state Accuracy

e The steady-state error is
1 1

€ss = =

1+ K, 1+ Kg,
eFor N > 1, K, = oc and the steady-error ess is zero.
e Now consider a unit ramp as input. Since r(t) = ¢,

Tz
R(z) = ——
1
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Steady-state Accuracy

Steady-state Accuracy

eFor N = 1,

K, 1 T
= e 88 — T =
T K, Ky,

Ky

For N > 2, K, = ooand egg = O.

e In general, increased system gain and/or addition of
poles at z = 1 to the forward path of the closed-loop
system tend to decrease steady-state errors.

However, we will see later that large gains and G(z)

poles at z = 1 have destabilizing effects on the system.
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e The steady-state error is

. Tz
€gs = lm

1 (z — 1) + (z — 1)G(z)
T

lim(z — 1)G(2)

e Define the velocity error constant as
1
Ky = lim —(z — 1)G(=z
v = lim ( )G(2)

For N = 0, K, = 0 and egs = oc.
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Steady-state Accuracy

e Example 4. Calculate the steady-state errors. Given

G( ) 1 — G_TS |: K :| R(s)+ C(s)
= —% T !
y s s(s + 1)

e Taking the z-transform of G(s),

G(z) = KZ !1_76_%} _ K@ - 1)2{ 1 }

s2(s + 1) z s2(s + 1)
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Steady-state Accuracy

e Simplifying,
G(z) = @ .
2Z(eT +T — Dz + 1 — €T — TeT)]
(z — Dz — 1)
Kl(eT 4+ T — 1)z 4+ 1 — T — T 1))
(z — 1)(z — €7T)

e The system is type 1.
Thus, the steady-state error to a step input is zero.
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Steady-state Accuracy

Steady-state Accuracy

e Example 5. Consider the previous example but with
1 — ¢ Ts 1 - e T
s(s + 1) | T

z — €

G(z) = Z[

Assume that demands that the steady-state error to a
unit ramp input is less than 0.01.

e Thus, the open-loop system must be system type 1 or
greater.
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e The velocity error constant is

1
K, = lim — -1
v = 7= - DEE)

CK[eT + 1T —1) + 1 — T — T T)]

T(1 — e 7T)
= K

Thus, the steady-state error in response to a ramp input
is
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Steady-state Accuracy

e Since G(z) does not have a pole at z = 1, let us
introduce the following compensator.
Kz
D(z) = — + K
() = = + Kp

The above digital compensator is termed a PI
compensator.

e Thus, the closed-loop system will be

R(s) 4
—( )—" —» D(z) || G(s) -
— T
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Steady-state Accuracy

e The velocity error constant is

1
K, = zh—)mlf(z — 1)D(2)G(=)

e Substituting the expressions for G(z) and D(z) we get

. K; + Kp)z — Kp |1 — T
Ky = lim(z — 1) T
z—1 T(z — 1) z — €~
Ky
T
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Summary

Steady-state Accuracy

e Time response of a discrete-time system.

e System characteristic equation.

e Mapping between the s-plane and z-plane.

e Steady-state error.
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e Thus, based on the system requiremnt

1
€gs — E S 0-01

v

we get Ky > 1007, assuming the system is stable.

System Time Response Characteristics
EE 233

©2002 M.C. Ramos
UP EEE Department



