Today’s EE 233 Lecture

e Analysis techniques for closed-loop DT systems.
e Review of open-loop system configurations.

e Introduce closed-loop system analysis techniques.

—issues in deriving the output function.
—original SFG and sampled SFG.

e State variable forms.

—isolating the analog part of the system.
— continuous-time to discrete-time transformations.
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E(s) A(s A*(s) C(s
Gi(s) &4» Gs(s) —L)
e Then, we T
considered

C(z) = G2(2)[G1E](2)

No pulse transfer function can be derived since the
input term E(z) cannot be factored out of [G1E](z).

B(s) c(s)
- D(z) 1 - G, (5)

e With a digital
filter. G(s)

C(z) = D(2)G(z)E(z)
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Preliminaries
e Open-loop B o BG (s) M (s) g
systems. T T

We derived
(or at least tried
to derive) the

C(z) = Gi(2)G2(2)E(2)

pulse transfer E(s) , E*(s) C(s)
J4> s > s) —»

functions for . Gi(s) Gale)

different

configurations. C(z) = [G1G2](2)E(=)

e For these two cases, it is not difficult to come up with
the pulse transfer functions.
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Preliminaries

R(s)  E(s) E*(s) C(s)
— | G(s) -

e Let us now consider
the following
closed-loop system.

— T

H(s) [

e The output may be expressed as
C(s) = G(s)E*(s)
while the error may be written as
E(s) = R(s) — H(s)C(s)
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Preliminaries

e Eliminating C(s) by combining the two equations gives

E(s) = R(s) — H(s)G(s)E*(s)

e Taking the starred transform.

E*(s) = R*(s) — [GHI]*(s)E"(s)

e Solving for E*(s).

R*(s
1 + [GHI*(s)
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Preliminaries

e Derivations for discrete-time closed-loop systems may
not be as straightforward as the continuocus-time case.

Take for example, the output and error equations.
C(s) = G(s)E*(s) and E(s) = R(s) — H(s)C(s)
We might directly solve for C*(s) by

—getting E*(s) from second equation, and
—substituting the result into first equation.
C*(s) = G*(s)R*(s) — G*(s)[HC]"(s)

However, we cannot solve for transfer function since
C*(s) cannot be factored out of [HC|*(s).
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® The continuous-time expression for the ocutput is then
R*(s)
1 + [GH]*(s)

C(s) = G(s)

@ The discrete-time version is
G*(s)R*(s)

C*(S) = G*(S)E*(S) = 1 + [GH]*(S)

G(z)R(z)

Clz) = 17 [GH](2)
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Preliminaries

R(s) |  E(s) C(s)
G(s) -

e Now, analyze the
following closed-loop
C*(s C(s
system. H(s) () @

T

e Writing the output and error equations.

C(s) = G(s)E(s) and E(s) = R(s) — H(s)C*(s)

e Eliminating E(s).
C(s) = G(s)R(s) — G(s)H(s)C*(s)
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Preliminaries

Preliminaries

e Taking the starred transform.

C*(s) = [GRI*(s) — [GH]*(s)C*(s)

e Solving for C*(s) (and also C(z)), we get
[GRI*(s)
1 + [GH]*(s)’

[GRI(2)
1 + [GH|(z)

C*(s) = C(z) =

e Substituting the C*(s) back into the C(s) equation, the
continuous-time version is

C(s) = G(s)R(s) — G(s)H (s)[GR]*(s)

e Indeed, no (pulse) transfer function may be derived for
this system. The input function does not appear as a
separate factor.

e Sampling the output signal instead of the input signal
necessitates the combination of the input function with
the plant transfer function in the analyses.

e Upon taking the starred transform, the input function is
lost and may not be factored out from the starred
expressions to reveal a transfer function for the system.
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Derivation Using SFGs

1 + [GH]*(s)
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force applied
e Example 1. v to the
Manipulator w _/  endoffector
end_effector Jjoint position b4
. control
position ‘> @ .
control. -

e The desired joint angle position comes from a sampled
trajectory. Thus, a transfer function may be developed
from joint angle input to the end-effector position.

In contrast, a force applied to the end-effector can also
be considered an input. However, a transfer function
cannot be developed since the force is not sampled.
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e Difficult to determine the transfer functions for
discrete-time systems.

There is no transfer function for the ideal sampler.

e Let us derive everything else about the system transfer
function except for the part concerning the sampler.

e We will perform the derivation by using a signal flow
graph and omitting the sampler.
This SFG (without the sampler) will be termed as the
original SFG of the system.
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Derivation Using SFGs

Derivation Using SFGs

e Consider the block diagram of a system with a sampler
and the corresponding original SFG.

R(s) + E(s) E*(s) C(s)

G(s) > R 1 E E* G C
3 i
H(s) |= _H

e After constructing the original SFG,

—we assign a variable (e.g. E(s)) for the sampler input
node and,

—denote the sampler cutput node as the starred version
of the assigned variable (e.g. E*(s)).
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Derivation Using SFGs

e Write the relevant equations for the nodes, especially
the system output nocde and the sampler input node.

e Take the starred transform of the equations.
Solve for the ocutput expression.

e Alternatively, the equations may be used to come up
with a signal flow graph where Mason’s gain formula can
then used to derive the transfer function.

This SFG is termed as the sampled signal flow graph.
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Derivation Using SFGs

e From our original SFG, we have
E(s) = R(s) — G(s)H(s)E*(s)
C(s) = G(s)E*(s)
Taking the starred transform.
E*(s) = R*(s) — [GH]*(s)E*(s)
C*(s) = G*(s)E*(s)
Solving for the output.

R
Be) = 1 enps)
C*(s) G g

1 + [GH]*(s)
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e Recalling the previous three We come up with
equations. the sampled SFG.

C(8) = G(s)E*(s)

B*(s) = R*(s) — [GHI*(s)E*(s) —tam />
C*(s) = G*(s)E*(s)

R 1 E* G* c*

e From the SFG, C*(s) and C(s) may be written as

G K
C*(s) = (5) _ prs)
1 + [GH]*(s)
G(s)
C(s) ——R*(s)
1 + [GH]*(s)
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Derivation Using SFGs

e Example 2. Consider the closed-locop control system.

R(s) + Plant C(s)
o | digital - - -
ADZ " | controller ™1 pac > Gpls) o

Sensor

H(s)

The system may be modeled as
G(s)

E(s) M*(s) C(s)

R(s) 4+

—={ D) - - Gy(s) -
— T

H(s) |
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Derivation Using SFGs

Derivation Using SFGs

e Original SFG, and equations for ncdes E and C.
R 1 E E* D* M* G C
C = GD*E*
-H

e Taking the starred transform, and solving for E*(s).
R*
1 + [GH]*D*

E* = R* — [GH|*D*E* = E* =

Solving for C(z) from C*(s) and E*(s).
G(z)D(z2)
1 + [GH]|(z)D(z)

C* = G*D*E* = C(z) = R(z)
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Derivation Using SFGs

e Example 3. Consider the following system model.

R(s) 4 + C(s)
— Gi(s) — Giy(s) [—O—>
— T — T

H(s) |-

The original SFG and node equations are
R 1 B B e B B eac Ei=R — GaE;
-H E; = G1E]f — GHE;
C = G2FE;
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e Using the starred transform to get the sampled SFG.
E! = R* — GiE}
Ei = GIE* — [GoH|*E}
C* = GLE}

Using Mason’s gain rule,

G4(5)G3(s)
C*(s) = P B ()
1 + Gi(s)G3(s) + [G2HI*(s)
G G
1 + G1(2)Gz2(z) + [G2H](2)
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Derivation Using SFGs

Derivation Using SFGs

e Example 4. Consider the following system model.

R(s) B E +  Cs)
—t?—{D—/IH Gi(s) —i?—» Ga(s) —ié—{b—»
_ T _

The original SFG is
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Derivation Using SFGs

e From the SFG, the equations for nodes Fq and C are
Ei=R — C
C = E1 + G2[G1E] — C]
Substituting, we get
C=R — C 4+ G1G2E] — G2C
2 + G2]C = R + G1G2E]

Thus,
1 G1G3
c=— R4+ 272 p
2 + Gs 2 + G
1 + Gs G1G> N
Ey = —F+R — ——FEj
2 + Gs 2 + Gs
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Derivation Using SFGs

e Taking the starred transform,

*

G1G2 1*
1

1 *
2 + G 2 + Gs
1 G * GG *
2 + Go 2 + G2

Drawing the sampled SFG using the above equations.

-5
[1 + GZRT 2 + G
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e Employing Mason’s gain rule, we get

C(e) = [m%
221 h 4oy
e

2 + Go

e No transfer function may be written for the system since
the input to Ga(s) is not sampled.
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Derivation Using SFGs

e Example 5. System with a digital controller and delay.

R(s) + C(s)
G(s) >
H,y(s) |
Hy(s) [«— et |=— D(z) ja—o\—
T
From the original SFG, R 1 G C
GR GHye tos &
cC = - _ _ T2 __pr*c*
1 + GH; 1 + GH; -0 —=—o0
e—tos D* C*
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Derivation Using SFGs

e We will now lock at a technique for expressing the
system equations in state variable form.

e The system will be redrawn to separate the
continucus-time part and the sampling blocks.

A discrete-time model will be derived for the
continuous-time system.

The discrete-time model for the whole system would
then be written.

e This technique is applicable for closed-loop systems as
well as for open-loop systems.
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where mT = T — tgfortg < T.
Solving for C(z), we get
GR
e @

1 + GH;
GH5

1 + GH;

C(z) =

1+ [ } (z,m)D(z)

e What happens for t¢ > T7
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State Variable Forms

e How do you derive a discrete-time model from a
continuous-time model?

We need to first derive a state variable model from the
continuous-time system transfer function.

Then, we will convert this state variable model to the
equivalent DT state variable model.

e Let us start from a general form of a transfer function.
bp—18""1 + bp_2s""2 + ... + b
s + ap—_1s"1 4+ ... 4+ ag

G(s) =
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State Variable Forms

e Introducing a dummy variable E(s) and using

G(s) = Y(s)/R(s),
Y(s) bp_18""1 + byp_25""2 + ... 4+ by E(s)
R(s) s" + ap—18""l + ... + ag E(s)

e Splitting the above equation gives

Y(s) = (bn_1s™" ' + bp_2s™" 2 + ... + bo)E(s)
R(s) = (s" + an_1s""" + ... + a0)E(s)
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State Variable Forms

State Variable Forms

e Expanding and taking the inverse s-transform of

R(s) = (8" + ap_1s""' + ... 4+ ag)E(s)

gives us the state equation for &y (t).
Zn(t) = —agz1(t) — arza(t) — ...
— ap—1Zn(t) + u(?)

The rest of the state equations are simply,
#1(t) = x2(2)
@2(t) = x3(t)

in—l(t). = n(t)
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e Recalling the Laplace transform for the derivative
operator, we can assign state variables as

E(s) — e(t) = z1(¢)

sB(s) = é(t) = #1(t) = wa(t)
$2E(s) — &(t) = da(t) = @3(t)
= n—1
S"TIB(s) > —re() = @n_1(t) 2 wal®)
s"E(s) — ;t—ne(t) = Zn(t)

We now have all the state equations except for @n(t).
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State Variable Forms

e In matrix form,

@(t) = Axz(t) + Bu(t)

where
z1(t) &1 (%)
zn(t) Zn(t)
0 1 0 0 §]
0 0 1 0 0]
A = 0 0 0 0 B = !
i 0
—ag —a1 —Aag ... —Qp_1 1
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State Variable Forms

e The cutput equation is cbtained by expanding and
taking the inverse s-transform of

Y(s) = (bn—lc‘gn_1 & bn_zsn_2 4+ ... 4+ bgo)E(s)

which gives in matrix form,
x1(t)
y(®) = Bobr ..o by | 20
zn (1)
or y(t) = Cx(t) where C = [bg by ... bp_1].
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State Variable Forms

State Variable Forms

e Solve the state equation first.

#(t) = Acx(t) + Beu(l)

e Use linearity and supersposition.

If u(t) = O for all ¢, then the solution is

zp(t) = eAct

where c; is some constant vector.

C1

With no initial conditions, and taking intc account that
input is some constant 4 for the sampling interval T,

xp(t) = — Ac_chﬂ assuming Ac_1 exists.

Closed-loop Discrete-time Systems ©2002 M.C. Ramos
EE 233 UP EEE Department

e Now, how do we go from
&(t) = Acx(t) + Beu(t)
y(t) = Cex(t)
to discrete-time equivalent
z(k + 1) = Agxe(k) + Bgu(k)
y(k) = Cqz(k)

e Basically, we find a sclution for the continucus-time
equations for one sampling period T'.

We set the input to the CT system to be
u(t) = u(kT) kT <t < (kK + )T
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State Variable Forms

e Thus, if (0) denotes the initial condition of the system
x(t) = eAet[z(0) + AJ'B.u] — AJ'B.a
= eAclx(0) + [e — I|A'B.u

® We calculate the state of the system after one sampling
pericd T by computing relative to the start of the
sampling interval.

Note that at the start of the sampling interval, the
system state is z(kT'). Thus, we use (kT') as our initial
condition for that time interval.

Furthermore, the input is constant for the sampling
period, i.e. u = wu(kT).

Closed-loop Discrete-time Systems (©2002 M.C. Ramos
EE 233 UP EEE Department



State Variable Forms

e The state of the system after one sampling pericd T
denoted by z[(k + 1)T] is

z[(k + 1)T] = eATx(kT) + [eAT — I|A7'Bou(kT)

e For a discrete-time system, we are only interested in the
states at the sampling points.

From the above equation we can now develop our DT
state equation as

z[(k + 1)T] = Agz(kT) + Bgu(kT)
where Ay = el and By = [GACT_HAc_lBC‘
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State Variable Forms

State Variable Forms

e Example 6. Let T' = 0.1 s. Derive the discrete-time
state variable model for

R(s) | Ei(s) , Fi(s) L BEis) , Bi(s) c(s)
——»  Gi(s) — Gy(s) >
N T — T

H(s) |-

1 — Ts 1 — ¢ Ts
Gi(s) = ———Gpi(s), Ga(s) = ————Gpa(s)

s + 10
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e As for the DT output equation, it is the CT output
equation considered for discrete times t = k7. Thus,
y(t) = Ccz(t) = y(kT) = Cgz(kT)
where Cy = Ce.

e Since we are primarily studying discrete-time systems,
we usually drop the subscripts and the sampling period
notations from our discrete-time equations.

z(k + 1) = Ax(k) + Bu(k)
y(k) = Cxz(k)

where A = eAcT, B = [eAcT —I]Ac_ch and C = C..
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State Variable Forms

e The plant transfer functions are

2
Gpi(s) = —— and Gpa(s) =
p1(s) s(s + 1) p2(s) s + 2
e The system can be redrawn as
analog system
R(s) 4  Ei(s) , Fi(s) By(s) 0 L Ba(s)
— Gho(s) — Gi(s) D
T ! = |
Ex(s) , B3(s) Ey(s) 1
—» Gho(s) —{ Ga(s) »{ H(s) 1
T : Y
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State Variable Forms

e The SFG of the analog system is

ex(t)
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State Variable Forms

State Variable Forms

e The DT state equations will now be derived from the
continuous-time equations.

vk + 1) = Av(k) + B[Zg’,:”

4| = o

Notice that ea(k) is the discrete-time versions of both
e2(t) and ex(t).

e The matrix C is derived from
C=0Ce= [1 0-10
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0001}

e The continous-time state equations can be written from
the SFG.

01 0 o0 00
o _ |O0=1 0 0 10| [&(t)
M = 1o 0 —1010|°®D* |0 [@(t)}
00 0 —2 02
y# ] _ [00 0 1
[82(15)} - [1 0—10)°®
or
. ei(t) y(t)
v(t) = Acv(t) + Be| ~ and = Ceu(t
® = aeott) + Be || ana | SE] = Gt
B S P T Dapartmat

State Variable Forms

o If Ac_1 exists, matrices A and B may be computed from
A = 4T and B = [eAcT —I]Ac_ch

However, for this case, A. is singular.

e We may expand out the factor [eA<T — I ]Ac_l by Taylor
series expansion to eliminate the need to compute A;l.

T2 T3

T2 T3
AT -1 _ 2
[6 T — I]AC = IT + Acg + AC? +
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State Variable Forms

State Variable Forms

e Alternatively, we may use Octave’s c2d function.
>> [A,B] = sys2ss( c2d( ss2sys(Ac,Bc,Cc), T))

A =
1.00000 0.09516 0.00000 0.00000
0.00000 0.950484 0.00000 0.00000
0.00000 0.00000 0.36788 0.56356
0.00000 0.00000 0.00000 0.81873

B =
0.00484 0.00000
0.09516 0.00000
0.00000 0.06856
0.00000 0.18127
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State Variable Forms

e OCur discrete-time version for the analog part of the
system is now known.

ok + 1) = Av(k) + B[E;EZ”

a0 = ot

e Now we need to get everything together.
—the input (k) should appear in the state equation.
—the output equation should be for y(k) only.

We need to get expressions for e(k) and ez(k).
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State Variable Forms

e Look at the SFG of -t
the whole system. Tl DT version of y(k)

e (k) the analog

e1(k) = r(k) — y(k) part of the

ex(k) Q i system 0 ex(k)
1

o If we decompose the C matrix into {gl}, we get
2

y(k) = C1v(k) = ei(k) = r(k) — Crv(k)
e2(k) = Cau(k)

Closed-loop Discrete-time Systems (©2002 M.C. Ramos
EE 233 UP EEE Department

e Decomposing the B matrix into [By Bz, we can write

r(k) — Cru(k)

v(k + 1) = Av(k) + [B; B Cav(k)

e Thus, we have a discrete-time state variable model for
our system.

vk + 1) = [A — B1Cy + B3C3lu(k) + Bir(k)
y(k) = Civ(k)
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Summary

e Review of open-loop systems.

e Closed-loop system analysis techniques.
—starred transform.
—original SFG.
—sampled SFG.

e State variable forms.

—isolating the analog part of the system.
—performing continucus-time to discrete-time
transformations.
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