Today’s EE 233 Lecture E(z) and E*(s) Relationship

e Analysis techniques for open-locop DT systems. e Recall the z-transform of a sequence {e(k)}.
Z[{e(k)}] = E(z) = e(0) + e(1)z™! + e(2)z72 + ...
e Relationship between E(z) and E*(s).

e The starred transform for e(t) is

@ Pulse transfer function. E*(s) _ e(O) + e(T)e_TS + e(2T)e_2TS +

e Open-loop systems with digital filters.
e Thus, if {e(k)} is the sampled version of e(t) at a

sampling period T, and if we take el's = z,
e The modified z-transform and time delays. *
Y E(z) = E*(s)|rs—,
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E(z) and E*(s) Relationship E(z) and E*(s) Relationship

e We may now view the z-transform as a special case of e Example 1. Determine E*(s) if
the Laplace transform. 1
E(s) =

In our analyses, we will primarily use the z-transform.

(s + 1)(s + 2)
From the z-transform tables,
Z(E_T _ 6—2T)

i (2 — e D)z — 2T
If we need the starred transform, we will first get the
corresponding z-transform, and then determine E*(s) by Thus, with the appropriate change of variable,

E*(S) = E(z)|z=eT‘”

e A change of variable will give us the starred transform. E(z) = E*(s)‘ .
€'s =z

6T.S(e—T - 6_2T)

E*(s) (eTs — e T)(ls — e—20)
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E(z) and E*(s) Relationship

e Note that E*(s) usually has an infinite number of poles
and zeros. In contrast, the number of poles and zeros of
E(z) are often finite.

Using z-transforms in pole zerc based techniques
simplifies analysis.

e Recall the use of residues to get E*(s), E(z) can also be
determined by

E(Z) = Z |:reSldueS of E(A)m
at poles
of E(A)
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Pulse Transfer Function

E(z) and E*(s) Relationship

e Develop a z-transform expression for the cutput of an
open-loop sampled-data system.

This expression will be used in the upcoming closed-loop
discussions.

e Consider the system

E(s E*(s) _Ts C(s
= T S o e

T

G(s)

where G)(s) is the plant transfer function.
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e Due to the direct relationship of E(z) and E*(s),
z-transform theorems are applicable to the starred
transform.

e The z-transform table can alsc be used as starred
transform table. No separate starred transform table is
necessary.

e The use of z-transform will be advantageous to our
development of additional analysis techniques for
discrete-time systems.
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Pulse Transfer Function

e The combination of the zerc-order hold transfer function
and the plant transfer function is denoted as

_r E(s) B(s) c(s)
— € ' - | GG

Gls) =~ Gpls)

T

e G(s) contains the data hold transfer function.

We will usually lump the data hold TF with the plant
TF as one transfer function G(s). Thus,

C(s) = G(s)E*(s)
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Pulse Transfer Function

o If ¢(t) is continuous at all sampling points,

C*(s) = % Z C(s + jnws) = [G(s)E*(s)]"

n——oo
Thus,

C*(s) = Z G(s + jnws)E*(s + jnws)

1
T
n

e Recall that E*(s) is periodic, i.e.,
E*(s + jnws) = E*(s)
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Pulse Transfer Function

e The previous derivation can be applied to any function
A(s) = B(s)F*(s)
where F*(s) can be expressed as

F*(s) = fo + fie Ts 4 fae7 2T 4+

e In the same vein as the previous calculations,

A*(s) = B*(s)F*(s) = A(z) = B(z)F(z2)

with B(z) = Z[B(s)] and F(z) = F*(s)| rs—,-
R —
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Pulse Transfer Function

e Then,
1 (o @]
C*(s) = E*(s)f Y G(s + jnws) =

n=—oo

E*(s)G*(s)

e Moving to the z-domain,
C(z) = E(2)G(z)

e G(z) is termed the pulse transfer function.
It is the transfer function between input and ocutput at
the sampling instants.
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Pulse Transfer Function

e Example 2. Determine the z-transform of A(s) where

1 - e Ts _ 1 T
A= T T e 1) 1)1.\(1 — e ),
B(s) F*(s)

e Computing B(z) from B(s) either by
—the residue technique.
—directly using b(t) = 1 — €

1 1 — 7T
B(z) = z[ } _ (@ =eT)2
s(s + 1) (z — 1)(z — 7T

_t.
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Pulse Transfer Function

e Determining F'(z) via change of variable.
Since F*(s) = 1 — e Ts,

F(z) = F*s)| s, =1 — 271

A(z) = B(2)F(z) = (2 il 1)(z —)i—T) [z
(1 — e 7T)
T2 — T
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Pulse Transfer Function
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Pulse Transfer Function

e Example 3. Determine the ocutput C(z) of the following
system in response to a unit step input e(t).

Bes) , E'G) [ om N c(s)
s s + 1

T

The output equation C(s) may be expressed as

Ols) = GEE () = L= ()
s(s + 1)
From the previous example,
G) = 2 [i} _ 1=t
s(s + 1) z — e T
By et ysens O BEE Darartment

Pulse Transfer Function

e From z-transform tables,

B(z) = Z[u®)] = ——

Thus,

1 — e Tz

C(z) = G(2)E(z) =

(z - eT)(z — 1)

e Taking the inverse 1f e

z-transform of C(z).

e(nT) =1 — T

c(nT)
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e A few notes.

The ocutput exponentially approaches unity at the
sampling instants.

The z-transform analysis only gives us the response at
the sampling points.

There is no information about what happens in between
sampling instants.

e Complete analog simulation of the system is usually
required in order to determine the system behavior in
the between sampling points.
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Pulse Transfer Function

e In response to a step input, the output of the sample
and zero-order hold is alsc unit step.

The reconstruction of the sampled function is exact.

Thus, the system response would exactly be the
continuous-time step response of the plant, i.e.,

c(t) =1 — e 3

e This verifies our z-transform analysis.

Knowing c(t) we can find ¢(nT) by replacing t with nT.

However, in general, we cannot extract c(t) from c(nT)
by simply replacing all occurrences of nT with ¢.
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Pulse Transfer Function

Pulse Transfer Function

e We can now define the DC gain as

DC gain = G(2)l,; = G(1)

e The DC gain may also be calculated directly from
continuous-time analysis. Consider again,

E(s) E*(s) T C(s)
— | Lo el G0 =

T

For a step input, the ocutput of sample and zoch
combination is unity. Thus,

DC gain = lim G
gain lim p(8)
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e Another check that can be performed is by examining
the DC gain. What is the DC gain?

e From the final value theocrem, the steady-state cutput in
response to a step input is

Css = le_rg@ — 1)C(z) = zll_I;ll(Z — 1)G(2)E(z)

z
For a step input, E(z) = N Thus,
z .

css = lim(z — 1)G(z)——— = LimG(z) = G(1)
z—1 z — 1 z—1

assuming that cgs exist.
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Pulse Transfer Function

e A simple check for our z-transform analysis is

DC gain = lim G(z) = lim Gp(s)
z—1 s—0

e Verifying our previous example,
1 — =T

Iim G = lim— =1
lim G(z) = lim =7

which agrees with

lim G =
lim Gp(s) = lim——
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Pulse Transfer Function

e Look at other open-loop systems.

* A *(s C
E(s) , E*(s) - () A*(s) Ga(s) (s)
T T
. c
Bl Pl ] Gi(s) = Gu(s) S
T
E(s) A(s) A*(s) C(s)
= Giy(s) ————{ Ga(s) [—>
T

Things are not as straightforward as in continuous-time
systems. We must lock at different configurations.
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Pulse Transfer Function

. E(s) E*(s) C(s)
e Now consider e Gl > Gai(s) [—>
T

G2(s) is not preceeded by a sample and hold. Gz(s) will
perform exactly as it would in continuous-time.

To get the total transfer function, G1(s) and Gz(s) are
combined as transfer functions in series.
C(s) = [G1(s)G2(s)]E*(s) = C(z) = [G1G2](2)E(2)

where [G1G2](z) = Z[G1(s)G2(s)] is the z-transform of
the series combination of G1(s) and Gz(s).

For this case, the pulse transfer function is [G1G2](2)
and note that [G1G2](z) # G1(2)G2(2).
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Pulse Transfer Function

E(s) E*(s) A(s) A*(s) C(s)
J4> Gi(s) #4> Gs(s) [—=
T T

e Consider

Deriving the total transfer function.
A(s) = G1(s)E*(s) = A(z) = Gi1(2)E(2)
C(s) = Gz2(s)A*(s) = C(z) = Ga(2)A(z)
Combining the two equations gives

C(z) = Gi(2)Ga(2)E(z)

The total pulse transfer function is the product of the
two pulse transfer functions.
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Pulse Transfer Function

E(s) A(s) A*(s) C(s)
e Now lock at e [ Gue)
T

The system cutput may again be written as
C(s) = Gz(s)A*(s)
The input E(s) is modified by G1(s) to give A(s).
A(s) = Gi(s)E(s) = A*(s) = [GLE]*(s)
Defining [G1E](z) = Z[G1(s)E(s)], then
C(s) = G2(s)[G1E]*(s) = C(2) = G3(2)[G1E|(2)

In this case, note that the input term E(z) cannot be
factored out to give a pulse transfer function expression.
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Open-loop Systems and Digital Filters

Open-loop Systems and Digital Filters

e We will now lock at the effects of a digital filter.

e(t) e(kT) m(kT) m(t) e(t)

— | anc p-| digital »| DAC | G,(5) —»
filter

E(s) M(s) C(s)

e How does this work?

—The ADC converts the continuous-time signal e(t) into
the sequence {e(kT)}.

—The filter processes the sequence {e(kT)} to come up
with sequence {m(kT)}.

—The DAC converts {m(kT)} to the continuous-time
signal m(t).
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Open-loop Systems and Digital Filters

e Digital filter implements a linear difference equation.
If D(z) is the transfer function of the filter, then

M(z) = D(z)E(z) = M?*(s) = D*(s)E*(s)
where D*(s) = D(z)|,__rs.

e The DAC usually has an output data hold which
functions similar to a zero-order hold.

Thus, we can come up with an equation similar to that
developed in the sample and zerc-order hold case.

_ 1 — e Is

M(s) = fM*(s)
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Open-loop Systems and Digital Filters

e The cutput equation is

_ 1 — e Ts
Cls) = Gp(s)M(s) = Gpls)————M*(s)

Substituting the digital filter equation,

G_TS

Cs) = Gpls)————D*(s)E*(s)
Thus,
1 — ¢ Ts
C(z) =2 le(s)f} D(z)E(z)
= G(z)D(z)E(=)
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e As in the sample and zerc-order hold discussion, the
signal corresponding to M*(s) is not an actual signal.

e Physically, the digital filter processes input data
sequence {e(kT)}.

However, our digital filter model processes signals as an
impulse train with corresponding weights {e(kT")}.

e In the analysis, the combination of the ideal sampler,
digital filter D(z) and zero-order hold accurately models
the ADC, filter and DAC combination.
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Open-loop Systems and Digital Filters

e Example 4. Determine the step response.

e(t) e(kT) m(kT) m(t) c(t)
._/.—> D(z) | L™ - i o
8
B T B M) ) c(s)
G(s)

The filter is based on the following difference equation.

m(kT) = 2e(kT) — e[(k — 1)T]

Taking the z-transform, M(z) = [2 — z_l} E(z).
M(z 2z - 1
Thus, D(z) = (2) =2 — 21 =2
E(z) z
Open-loop Discrete-time Systems ©2002 M.C. Ramos
EE 233 UP EEE Department

Open-loop Systems and Digital Filters

Open-loop Systems and Digital Filters

e Also, from a previous example

G(2) Zl—e_Ts 1 — T
Z —2 p— = _—
s(s + 1) z — €T
e For a step function, E(z) = d Thus,
z —
22z — 1 1 — T z
C() = DEHIGRB(R) = i
2z -1 - 7
(z — 1)(z — 1)
By e e o —

Open-loop Systems and Digital Filters

e Using partial fraction expansion, we get

C(z) (22 — 1)1 — e~ T)

z  z2(z — 1)(z — €T
_1—<-;TJr 1 +eT—2
N z z — 1 z — e T

T
_ T z (e0 — 2)z
C’(z)_<1 €>+z—1+z—e_T

e Thus,
c0)=010—-€e) +1+ (' =2)=0
enT) =1 4+ (f — 2)e™™, n = 1,2,3,...
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e We can verify ocur result using the final value theorem.
nll)néo c(nT) = zll_)ml(z —1)C(=)
2z — 1)(1 — € T)

= lim =1
z—1 z — e T

e The DC gain of D(z) and G(s) contributes to the overall
DC gain of the system.

DC gain = [lim D(z)} [lim Gp(s)}
z—1 s—0

2z — 1 1
_ [nm4} {um } ~ 1
z—1 z s—0s + 1
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Open-loop Systems and Digital Filters

e Finally, since we have a unit step input,
li T) = DCgain = 1
i c(nT) C gain

Thus, our final value theorem result and DC gain
analyses agree.

e Locking at the ocutput of the digital filter.
m(kT) = 2u(kT) — u[(k — 1)T]

For a constant input, the filter cutput is also constant.

Then, the input to G(s) is also constant. We can use the
CT version of the final value theorem to get cgs.

Open-loop Discrete-time Systems ©2002 M.C. Ramos
EE 233 UP EEE Department

Modified z-transform

e From the infinite series expression,

Zle(t — AT)u(t — AT)] = ie(kT — AT)z7F
k=1

e The above is termed as the delayed z-transform.

The delayed z-transform of e(t) is denoted as

E(z,A) = Zle(t — AT)u(t — AT)] = Z |E(s)e” AT¢

e The delayed starred transform may also be defined by
using the change of variable z = €I%

Open-loop Discrete-time Systems
EE 233
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Modified z-transform

e Why time delays? How do we analyze a system
containing ideal time delays?

Time delays are not necessarily an integer multiple of
the sampling period. Thus, we need to develop the
z-transform of a time delayed function.

e The delayed z-transform.

Consider function e(t) delayed by AT, 0 < A <1.
The z-transform (in our usual definition) is

Zle(t — AT)u(t — AT)] = Z[E(S)e—ATs]

Open-loop Discrete-time Systems
EE 233
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Modified z-transform

e Example 5. Find delayed z-transform E(z,A) for
e(t) = e %u(t) and A = 0.4.

— ¢ 0.6aT,—1 [1 + eoT,-1 ]

G—OﬁaTz—l G—OﬁaT

1 — e—aTz—l

z — eoT

e(t)

[

e(t — AT)u(t — At)

evO.GaT

673.6aT

(=]

amplitude
amplitude
-

T 2T 3T 4T

00.4T T 2%‘ 3T 4T
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Moedified z-transform

Modified z-transform

e Now let us go to the modified z-transform.

e Two properties of E(z, m).
The modified z-transform is equal to the delayed

z-transform with a change of variable A = 1 — m. E(z,1) = E(z,m)|p—1 = E(z) — e(0)
_ATs and
E(z,m) = E(zA)|acq_m = Z[E(s)e ]

-1
A=1-m E(z,0) = E(z,m)|,—¢ = 2z~ E(z)
Thus,

E(z,m) = [e(T — AT)2"! + e(2T — AT)z2

e The m = 1 case corresponds toc no delay.
+ e(3T — AT)z_?’ + .. ] Even with no delay, the e(0) term does not appear in
A=1—m .
. A the modified z-transform.
= e(mT)z + el _'3_ m)T]z For m = 0, we have a delay of one sampling interval.
+ e[(2 + m)T|z7° +
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Modified z-transform

Modified z-transform

e Example 6. Find E(z,m) for e(t) = e *u(t).
E(zym) = e ™Ty=1 4 ¢~ (14m)T,—2

e To be able to use the modified z-transform in our
analysis, new tables for the modified z-transform must
be derived. The tables may be derived using

E(z,m) = Z [E(S)G_ATS}A )
= ¢ MTy~1 [1 + e Tyl 4 2T—2 4 ] X Ts -m X T
=/Z [E(s)e_( —-m) s} =2 'Z [E(s)em s}
e—mT,—1 e—mT
1 — e Tz z — €T
e(t) e(t — AT)u(t — At) e We can adapt the previous technique employing residues.
3! 2! ~@tmr | i 1
3 3 - ¢ E(z.m) = 21 residues g (\)e™mAT
é\ "é e~ (1+m)T ( ’ ) Z of ( ) 1 — Z_]‘G)‘T
s s | o mT — at poles
(] T ¢ 2T 3T 6 AT T t 2T 3T of E(A)
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Moedified z-transform

Modified z-transform

e Provided that e(t — AT) is continuous at all sampling
instants, our starred transform equation becomes

E(s,m) = % Z E(s + jnws)e_(l_m)(erj"ws)T

n=—oc

e With care, theorems for ordinary z-transform may be
applied to modified z-transform. Let

ZnlB(s)] = Blzm) = 2[BEe ™|,

From the shifting property, for positive integer k,
Znle*TE(s)] = 27FZ,[E(s)] = 27FE(z,m)
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Time Delay in Systems

e Example 7. Find E(z,m) for e(t) =

t.
Zle®) = Bls) = &

Using the residue technique to find E(z,m),

d mT\
Blzm) = =~ {a [A_m} }
1 — z7 '€ A—0

1 |mT@ — 27 + Tzt
- (1 — 2—1)2 }
- mT(z — 1) + T
- (z — 1)2
Py e S B

Time Delay in Systems

e Investigate the pulse transfer function of discrete-time
systems with time delays. Consider

E(s) E*(s) C(s)
J Plant : G(s) » —tgs  |——m

T

C(s) = G(s)e °E*(s) = C(z) = z[G(s)e—teﬂ E(z)

Let to = KT + AT where 0 < A < 1, and where k
is a positive integer.

With A = 1 — m, using the modified z-transform,
C(z) = 27F=z [G(s)e—ATS] E(z) = 2~ kG(z,m)E(2)
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e Example 8. Find the unit step response for t; = 0.4T.

s *(s E] 1 - G_Ts
s 20 T 0 gy = L
T s(s + 1)

e Using the residue technique,

1 6'I’)’lfI‘A
MRS
s(s + 1) {[(1 — 271NN + 1)})‘:0

6mT)\
_|_
l(l — z_leT)‘))l)\z_l
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Time Delay in Systems

e Evaluating the residues gives,

o S
™ls(s + 1) 1 — 271 1 — 2z~ 1T

Thus,

1 — ¢ Ts
G(z,m) = Znp {m}

— 1
— (1 -z 1) Zm [m}
_* - 1 [z(]- - E_mT) + e—mT _ 6_T:]
- (z — 1)(z — €T

z

Open-loop Discrete-time Systems ©2002 M.C. Ramos
EE 233 UP EEE Department

Time Delay in Systems

Time Delay in Systems

e Expanding C(z) into power series form,
C(Z) — (1 _ E—O.GT)z—l + (1 _ 6_1'6T)Z_2

F (1 — e 26T),-3

e(nT) =1 — e (04T, n > 1

e Recall from a previous example that the unit step
response of the system without the time delay is

e(nT) =1 — e ™7, n > 0
Thus, c(nT)| 7 (n—o0.syr = 1 — e~ (=0T 1 > 1,

This verifies cur modified z-transform analysis.
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eSincem = 1 — A, mT = 0.6T. Then,
z — 1 Z(]_ _ G—O.GT) + G—O.GT _ G_T
z (z — 1)(z — €T

G(z,m) =

z
e For a unit step input, E(z) = b Thus,
z e

C(z) = G(z,m)—>—

z — 1
z(l _ 6_0'6T) + 6_0'6T 4 e—T
- (z — 1)(z — e7)
et Dire e s G oo

Time Delay in Systems

e The time delay is a physical reality when it comes to the
finite computation time of a digital controller.

Given an nth-order difference equation

m(k) = bpe(k) + bp_1e(k — 1) + ... + boe(k — n)
— ap—1m(k — 1) — ... — agm(k — n)

to be implemented using a digital controller.

In general, it would take some time tg to compute
solution, i.e., in response to an input at ¢t = nT, the
output would be available at t = nT + .

e In some cases, tgp is small enough (relative to T') that it
can be ignored and not cause control problems.

Open-loop Discrete-time Systems (©2002 M.C. Ramos
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Time Delay in Systems

Time Delay in Systems
e If delay tg is significant, we can model the digital e Example 9. Find the unit step response.
controller as an ideal (no time delay) controller followed filter time delay data hold plant
by a time delay %g. Ble) o B'G) | D(2) i 11— | G,(5) R
T s
filter time delay data hoeld plant
E(s) , E*(s) D(2) i 1= e Ts -l G, s) C(s) controller medel G(s)
T 2 Assume T' = 0.05 s and t; = 1 ms. Also,
2z — 1 1
controller model G(s) D(Z) = — and Gp(S) = + 1
z s

For this system model, C(z) = Z [G(s)e_tos] D(z)E(z).

Again, let tc = kKT + AT where0 < A < 1, and Since, in general, tg = kT + AT, we have k = 0 and
where k is a positive integer. Then, with A = 1 — m, AT = tg. Thus,

C(z) = = z27%G(z,m)D(2)E(z) A=1-—m= ml = (1-—A)T = 49 ms
T P ERE Department By e Bmens P FEF Departmont
Time Delay in Systems Time Delay in Systems
e Since k = 0 (the time delay is less than the sampling e Evaluating G(z,m) at mT = 0.049 and T = 0.05.
period), we have 4 ) 2(1 e—0-049) 4 —0.049 _ —0.05
zZ,m) =
’ z2(z — 6—0.05)

C(z) = G(z,m)D(z)E(2)
e Thus, for a unit step input and the given D(z),
2 1
} C(z):G(z,m)[z H z }
z z — 1
(22 = 1 [z(1 ¢—0:049) | —0.049

z(z — 1)(z — €0:05)

e From the previous example,
1
_ 6—0.05]

Glzm) = 1 — e 7Ts _z—lz[
#m) = &m s(s + 1) | z ms(s—|—1)

z(l _ e—mT) 0 e—mT + G_T
(z — 1)(z — 1)
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Summary

e We lock at how the starred transform is related to the
z-transform.

e Introduced the concept of a pulse transfer function.

Investigated possible uses of the pulse transfer function
and different configurations for sampled-data systems.

e Systems with digital filters.

e What is the modified z-transform. How does it help us
deal with systems containing time delays.
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