Today’s EE 233 Lecture

Sampling and Reconstruction

e Sampled data control systems.

e Ideal sampler.

e Starred transform E*(s) and its properties.

e Data reconstruction and data holds.

e Summary.
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Sampled Data Control Systems

e A discrete-time system is modeled by difference
equations. Signals within the digital control system are
described by number sequences.

e These number sequences may be from inherently
discrete-time systems.

Other sequences may be a result of sampling
continuous-time signals.

e To understand the operation of digital control systems,
we need to understand the effects of sampling a
continuous-time signal.
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Sampled Data Control Systems

e How is data usually sampled in discrete-time control
systems?

e Develop a mathematical model for sampling.

e Determine effects of sampling on the information
content of a signal.
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e Consider a radar tracking system.

radar
antenna

error, e

radar
platform

e Since 6 4(t) is the angle to the aircraft and 6g(t) is the
direction where the antenna is pointing,

e(t) = 64(t) — 6r(?)
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Sampled Data Control Systems

Sampled Data Control Systems

e A control system usually makes a decision on the input e The error cutput will look something like
based on the error signal.

An actuator signal also needs to be available every time
instant to drive the system plant.

amplitude

o If the radar only acquires a signal every T seconds, we
only know e(kT) for k = 0,1,....

(4] T 2T time

+ e(t) e(t)

o aGhoa e What about é(t) for t # EkT?
04(t) 4 sy, Or(t) ] .
_ [ vet What will happen to our radar antenna when there is no

actuator input?
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Sampled Data Control Systems

Sampled Data Control Systems

e It is usually undesirable to drive a plant with a sequence e One kind of sample and hold device is a sample and
of narrow pulses?

zero-order hold combination.
High frequency components of the pulses may excite I\ output, &(t)
undesirable modes of the plant and may lead to control

e — N input, e(t)
problems.

amplitude
N
.
.
.
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e A sample and hold is used to reconstruct the signal to as

close to as the continuous version. 0 T 2T 3T 4T time
" ~ Cutput &(t) can be expressed as
+ [} (3 _
oa(t) s o Ou(t) e(t) = e(0)[u(t) — u(t — T)]
- + e(T)[u(t — T) — u(t—2T)]
+ e(2T)[u(t — 2T) — u(t—3T)] + ...
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Sampled Data Control Systems

Sampled Data Control Systems

e Taking the Laplace transform of é(t).

3 1 G_TS e—Ts 6—2Ts
E(s) = e(0) [— - —} + e(T) [— -
S S S S
6—2Ts 6—3Ts
+ e(2T) . - +
_1 — G_TS
= 7:! [e(O) + e(T)e T3 + }
S
[ o —Ts
1 — €
|
| n=0 8
B g e Teeesntion U TBE Desertmant

Sampled Data Control Systems

e The sample and zoh can then be represented by

E(s) . R E(s)
—_— I:Z e(’nT)e_"T“} [f} ——

n=0

—the first factor is dependent on the sampled input.
—the second factor is a transfer function.

e Define the starred transform function E*(s) as
o}
E*(s) = Z e(nT)e T3
n=0
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Sampled Data Control Systems

e We can alternatively represent the sampling and
zero-order hold operation with

E(s) E*(s) E(s)
L ——

T

—the switch denctes the sampling operation.

—the transfer function block denotes the data hold
operation.

e The switch cannot be modeled by a transfer function
since different input signals can result in the same
output signal.
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e Notes about E*(s).

—it is not a physical signal and does not appear
anywhere in the physical system.

—it is a result of factoring of the mathematical model of
the sample and zoh combination.

e The switch-transfer function representation accurately
describes the input-output characteristic of the sample
and zoh combination.

The sampling operation (and the lack of a transfer
function to represent it) complicates the analysis of
sampled systems.
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Ideal Sampler

e Taking the inverse Laplace transform of E*(s).

e*(t) = L7 E*(s)] = e(0)d(t) + e(T)é(t — T)
+ e(2T)d(t — 2T) +

where §(t) is the unit impulse function at ¢ = 0.

e Thus, e*(t) is an impulse train with weights equal to the
signal value at the sampling instants.

e(®) T TE(O) Te(T) Te(ZT) TE(gT)

¢ T 2T 3T time
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Ideal Sampler

e It can seen that §p(t) is the carrier and e(t) is the
modulating signal.

The ideal sampler may be equivalently represented as

l or(t)

() e e(® () = e)br(t)
— — modutater [

T

e Note that the summation can be taken from —oo to +oo

with no impact on the impulse modulator equation since

the Laplace transform requires e(t) = 0 for t < 0.
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Ideal Sampler

e The sampler is an ideal sampler since nonphysical
signals appear on its output. Also termed as an impulse

modulator.
To see this modulation process, define

op(t) = D 6(t — nT) = &(t) + 6(t — T) +

n=0

e Thus, e*(t) can be written as

e*(t) = e(t)op(t) = e(t)d(t) + e(t)d(t — T) +

= e(0)d(t) + e(T)d(t — T) +
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discontinuity at the sampling instant £ =

e A potential problem occurs if the input e(¢) has a

e Define the output of the ideal sampler as the signal

whose Laplace transform is
o0

E*(s) = ) _e(nT)e "T*

n=0

where e(t) is the input signal.

If e(t) is discontinuous at ¢t = kT, then e(kT) is taken

to be the limit from the right e(kTT).
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Ideal Sampler

e Example 1. Determine E*(s) for e(t) = wu(t).

For a unit step, e(rT) = 1,n = 0,1,2,....
(e o]

E*(s) = Z e(nT)e T3

n=0
= e(0) + e(T)e 1% + e(2T)e 2T +
=1 + G—Ts + 6_2TS +

oUsing14 =14+ x + x2 + ..., we can write
—x

E* = 71 1

(s) = 1 — Ts <

—Ts
) ‘6
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Determining E*(s)

Ideal Sampler

e E*(s), in general, is expressed as an infinite series.

Difficult to use in system analysis.

e However, for many familiar time functions, E*(s) can be
written in closed form.

e We have additional forms for determining E*(s) based
on the inverse Laplace transform of E*(s).

e’(t) = e(t)or(t)
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e Example 2. Determine E*(s) for e(t) = et
o0
E*(s) = Z e(nT)e~"Ts
n=0

=1 4 (1 +9T [e_(1+3)T]2 n

e Using the power series identity,
1

E*(s) = 1 — (0 +9T

‘6—(1 + s)T‘
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Determining E*(s)

<1
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e One form useful in getting the starred transform E*(s)

is by using residues.

1
E* = id f E(A
(s) Z [rem ues of E( )1 e vy
at poles
of E(X\)

e The following form is useful for analysis.

1 & e(0h)
E*(s) = — E j
(5) = = O Bls + jnwy) + =
n=-—oo
where ws = 2#/T (radian sampling frequency).
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Determining E*(s)

e Example 3. Determine E*(s) given that
1

(s + 1)(s + 2)

Using the residue equation,

E(s) =

1
E*(s) = Z {residues of E(/\)1 e )\)T}
at poles
of E(X)
where
1
E
(A)l — e (=NT
1

- (>‘ + 1)()\ + 2) [1 — e (s— )\)T]
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Determining E*(s)

Determining E*(s)

e Example 4. Determine E*(s) for e(t) = sinft.
B B

B = @058 = =B + 38

Calculating the residues,

. B
E*(s) = > + 3B) [1 (s — /\)T] '
A=jB

B
(A = B [1 = e - T

A=—jp
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e Thus,
1
E*(s) =
(A + 2) [1 — (s - A)T}
A=—-1
1
+
(A + 1) [1 — (s - «\)T}
A=—2
1
*g) —
E (5)— 1 — 6_(S+1)T + 1 — 6—(s-|-2)T
e P PR Depariment
Determining E*(s)
e Thus,
1 1 1
E* = — : — -
(s) 2§ [1 — e TseiBT 1 — e Tse—3BT

e Expanding and using the following Euler identities,
BT | BT dBT _ —3BT
cos BT = , sin BT = -
2 23

we get
—Ts s
€ sin T
1 — 2 TscosBT + € 2Ts

E*(s) =
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Determining E*(s)

e Example 5. Determine E*(s) for e(t) = 1 — et

Using residues,
1

O =6

. 1
E*(s) = residues
()= > of  AA + 1) {1 (s - A)T}

1 1

1 — ¢ Ts 1 — T+ s)
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Determining E*(s)

Determining E*(s)

e Shifting property does not necessarily apply for the
starred transform. We can see this from

ZLle(t = to)u(t — to)] = e 0 ZLle(t)] = e W E(s)

We cannot get the starred transform from the residues.

e However, for time delay ty which in an integer factor of
the sampling interval T, i.e., tg = kT where k are
positive integers.

[e—kTsE(S)] Y e—FTs ()

Note that E*(s) depends on the sampling interval T'.

Sampling and Reconstruction ©2002 M.C. Ramos
EE 233 UP EEE Department

e Verify from the definition of the starred transform,

o0

E*(s) = Z e(nT)e "1

n=0
oo

— Z (1 _ e—t) e—nTs
n=0
oo oo

— Z e Ts _ Z e—nT(l + s)
n=0 n=0

1 1
T 1 — e Ts 1 _ T +s)
B P PR Depariment

Determining E*(s)

e Example 5. Given T = 0.25 s, determine E*(s) for
e(t) = [1 — (- 1)} u(t — 1)

Since tg = 4T, we can get the starred transform by
1 *
E*(s) = € °|———
s(s + 1)
Using the result from the previous example,
1 1
* __ _—s8 _
E*(s) = e [1 — ¢—0.25s 1 — —0.25(1 + s)}

(1 — 6—0.25) c—1.255

(1 — e—0.25s) [1 — ¢-0.25(1 +s)]
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Fourier Transform

Fourier Transform

e Recall that the Fourier transfor is defined as

Fle(t)] = E(jw) = / > e(t)e I«tat

— 0

while the single-side Laplace transform is defined as

Zle(t)] = /Oooe(t)e_Stdt

elfe(t) = O0fort < 0, we only need to evaluate from 0
to oo to get the Fourier transform. Thus, assuming both
Fourier transform and Laplace transform exist,

Fle®)] = Zle(t)]ls=jw
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Properties of E*(s)

e Due to this direct relationship, the Fourier transform is
usually dencted as

Fle(t)] = E(jw) where E(s) = Z[e(t)]

E(jw) is termed as the frequency spectrum of e(t).

E(jw) = |E(w)|ef®U%) = |B(jw)|£6(jw)

e Also since Y (s) = G(s)E(s), and most physical systems
are causal, i.e., g(t) = Ofort < O,

Y(jw) = GUw)E(w)
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Properties of E*(s)

e Property 1. E*(s) is periodic in s with period jws.

Proof. From the starred transform definition,

o0
E*(S 4+ jmws) - Z e(nT)e—nT(S + jmws)
n=0
o0
— Z e(nT)e_nTse_nijws
n=0
Since wg = 27/T, wsT = 2m. Also, we know from
Euler’s identity that e ~2"™™ = 1. Thus,
O
E*(s + jmws) = Ze(nT)e_"Ts = E*(s)
n=0
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e Property 2. If F(s) has a pole at s = s1, then E*(s)
has poles at s = s1 + jmws, m = 0,+1,+2,....

Proof. Using another form for determining E*(s),

1 oo
E*(s) = 2 Z E(s + jnws)
n=—o0o

1 . ,
:E[ + E(s — 2jws) + E(s — jws)
+ E(s) + E(s + jws)
+ E(s + 2jws) + ...]
If E(s) has a pole at s = s1, then the other terms have
poles at s = s; + jmwgs for integer m.
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Properties of E*(s)

e How about the zeros of E*(s)?

The zeros of E(s) do not directly determine the zeros of
E*(s).

From property 1, the zero locations of E*(s) are periodic
with period jws.

e Thus, we can deduce the locations of the poles and zeros
of E*(s) for the entire s-plane if we know the poles and
zeros of E(s) and the sampling rate.

Sampling and Reconstruction ©2002 M.C. Ramos
EE 233 UP EEE Department

Properties of E*(s)

e Two signals with the same E*(s).
Eq(s) = ZJcos(wit)] = - ;

1) = Zleosent] = Gy

E3(s) = Zcos(2wit)] =

L)

(s + j2wi)(s — j2wi)

Signals with the same E*(s)

Eq(s) has poles at s = = jw;.
E>(s) has poles at s = =+ j2wj. % cos(2uort)
These are the same poles £
. . . t
generated by s = F jwi £ jws cosfint)
where ws = 3w;g. 5 Y
time
Sampling and Reconstruction (©2002 M.C. Ramos
EE 233 UP EEE Department

Properties of E*(s)

. . - * 1
e Primary strip in the Pole zero map of E*(s) with
s-plane is defined as ws = 3wi.
the region for which b
ole zero map
Ws Ws I : : ‘ :
2 cwg i
2 2 ot o
2 X ;
If E(s) has a pole at I i
. —o1 + juwr
—0 w 3 ol
1+ Jw 3 TRE
. —o1 — 1
E*(s) will have pole at 7 * e
. x ’
—01 + Jwi ) o
—01 + j(w1 £ ws) | .
2.5 "2 15 "1 ’0‘.5 ‘0 05
o
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Properties of E*(s)

e Looking at the Fourier transforms of E(s) and E*(s).

1
E*(jw) = f[ 4+ E(jw — 2jws) + E(jw — jws)

+ E(jw) + E(jw + jws)
+ E(jw + 2jws) + ...]

|E(jw)| |E*(jw)|
1r L ‘ ‘ ‘ ‘
T
3 3
B =
—J2w,  —juw,s .0 Jws J2ws  —J2ws  —jw, .0 JWwa J2w,
time time

Sampling replicates the original spectrum centered at
w = kws where k is an integer.
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Properties of E*(s)

e As seen from the spectrum of E*(s), the original signal
may be recovered by an ideal low-pass filter with a
cut-off at ws/2.

This holds if the original signal does not have any
frequency content beyond w = wg/2.

e Shannon’s sampling theorem.

A time function e(t) which contains no frequency
component above fg Hz is uniquely determined by the
values of e(t) at any set of sampling points spaced
1/(2fp) seconds apart.
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Data Reconstruction

Properties of E*(s)

e In discrete control systems, a continucus signal is
reconstructed from a sampled signal.

In theory, a signal can be reconstructed exactly by using
ideal low-pass filters (assuming the sampling rate
conforms with Shannon’s sampling theorem).

e In practice, we cannot realize an ideal filter. Data holds
are used to approximate an ideal low-pass filter.

. e en(t)

sample lant
r® ? and hold plan { o(t)
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e Supposed that e(t) does contain frequencies above ws/2.

[E@Gw)| |E*(jw)|
1r _T
3 3
R &
—J2ws  —juws 0 Jws J2ws  —j2ws  —jw, Y Jws J2ws
time time

e No filtering technique will be able to recover e(t).

In choosing a sampling rate for a control system, the
sampling frequency should be twice the highest
frequency component which is of significant magnitude.
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Data Reconstruction

e Why sample a signal, and then reconstruct it again?

In many control systems, the sampling behavior is
inherent. Data is only available at discrete time instants.

Furthermore, to improve system performance, additional
digital processing will be performed on the sampled
signal before it is fed to the data hold.

e The output of the data hold, en(t), is defined as the
reconstruction of e(t) for the nth sample period.

en(t) = e(t) fornT <t < (n + 1)T
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Data Reconstruction

Data Reconstruction

e To reconstruct the signal, extrapolation is often used.
Using Taylor’s series expansion of e(t) about t = nT,

e’ (nT)

e(t) = e(nT) + &' (nT)(t — nT) + T

e The derivatives are approximated by difference
equations.

e (nT) = %[e(nT) — e[(n — 1)T]
e’ (nT) :%[e'(nT) — €[(n — 1)T]
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Data Reconstruction

(t—nT)?+ ...

e Zero-order hold.

COnly the first term of the Taylor’s series is used. The
input is assumed constant within the sampling interval.

en(t) = e(nT), nT <t < (n + 1)T

e Holds the current value until the next sample arrives.
Simple to implement since we do not need to remember
previous sample values.

The transfer function for the zero-order hold is
1 — ¢ Ts
Gho(s) =
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Data Reconstruction

e The transfer function may be derived by considering the
input to the data hold is an impulse function.

ei(t) e(t) |

unit impulse

® function 1

time T time
1 G_TS
eo(t) = u(t) — u(t — T) = Eo(s) = — —
s s
Since Z[e;(t)] = E;(s) = 1, the transfer function is
Eo(s) 1 — ¢ Ts
G = =
ho(s) () .
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® Gj0(s) is not a transfer function for a physical device. It
is a mathematical description of the hold operation in a
sample and hold device.

e Investigate the frequency response.

. 1 — e JvT
Gho(jw) = ————
Jjw
2¢—I(wT/2) [g3(wT/2) _ —3(wT/2)
N w 27
in(wT/2 .
_ pSinT/2) _jwry2)
wT/2
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Data Reconstruction

Data Reconstruction
. wT w (27 TW e Magnitude and phase plots.
e Since — = — [ — = —,
2 2 Wg Wg Magnitude plot 0 Phase plot
T

= 2

o] N

—180°

2wy 3w, 0 Wy Wy 2w, 3w,
? w

o
£

Gho(Jw) = S0/ 9s) (e )
TWw/ws

e Now consider that e(t) = 2cosw;t is the input to the

e Thus, the magnitude and phase responses are
sin(mw /w
|Gho(Gw)| = T M sample and hold.
Tw/ws
E(jw) = F2coswit] = d(w — w1) + d(w + wi)
) TWw . [(Tw
LGpo(Jw) = — - sign |:S11’1 <—)}
Ws Ws Two unit impulses centered at w = =+ wjy.
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Data Reconstruction Data Reconstruction
e Frequency responses of e(t) and e*(t). e Frequency response of the zero-order hold output.
|E(jw)| |En(jw)]
1 1
| | | | —— e TWs = N w, o
' ' ' ' ' ' o | A N4 * | | ; hN ‘ | -
3wy Ws w Ws w 3w, w T T T T T T -
s —w, —_— —w 1 - 5 o s s
2 2 2 2 _3:"‘ —% —wy w1 % Wy — W1 Wyt wp w
|E*(jw)|
1
T
Y 3 e The frequency response of the zerc-order hold
| | | | | | o determines the magnitude spectrum of the sample and
T T T T T Lol
3w, w, w, 3w, hold output.
_ - —w1 w1 — Wy — w1 Ws+wi w
2 2 2
©2002 M.C. Ramos Sampling and Reconstruction (©2002 M.C. Ramos
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Data Reconstruction

Sampled sinusoid

e Sample signal with an
output spectrum of

E,(jw).

e(t), en(t)

time

e Aliasing effect.
The output spectrum will be the same for a sinusoidal
input with frequencies w = kws + wi, k = 0,1,2....
Frequency components with w > wg/2 will register in
the frequency range 0 < w < wg/2.
Low-pass filter with a cut-off at ws/2 is added before the
sampling input to prevent aliasing.
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Data Reconstruction

Data Reconstruction

e First-order hold.
The first two terms of the Taylor’s series is used.
en(t) = e(nT) + €' (nT)(t —nT), nT <t < (n+1)T

where
e(nT) — e[(n — 1)T]

T

e (nT) =

e The output approximation for a sampling interval is a
straight line with slope e’(nT).

The sampled value from the previous sampling instant is
required to implement the first-order hold.
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Data Reconstruction

e To derive the transfer function, assume a unit impulse
input, and e(=T) = 0.

Based on the truncated Taylor’s series equation,

1+ L. 0<t<T
eo(t) = 0_}_{% t -T), T < t< 2T
0 2T < t
et
O
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e Thus, es(t) can also be written as
1
eo(t) = u(t) + Ttu(t) — 2u(t — T)
2
— T(t — Tu(t — T) + u(t — 2T)

+ %(t — 2T)u(t — 2T)

e Since E;(s) = 1,

E,(s) 1 2¢—Ts e 2Ts
Grls) = o0 = - -
E;(s) s s S
1
_ —Ts —2T's
+ g (1 - 2T g )
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Data Reconstruction

e In simplified form,

Ghri(s) =

e The frequency response of the first-order hold is then

: 472w?2 [sin(mw /ws)]2
|Gp1(jw)| = T4/1 + : { ( /s)}

w3 Tw/ws

2w 2w

/Gh1(jw) = tan~! <—> -
Ws Ws

©2002 M.C. Ramos
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Data Reconstruction

Data Reconstruction

e Magnitude and phase plots of the first-order hold.

Magnitude plot Phase plot

|Gl

—360°
0 Ws Wy 2w, 3w, (] ]

e Compare with the plots for a zero-order hold.

Magnitude plot Phase plot

[

T
— 2
.% =
® N
—180°

¢ % Ws w 2w, 3ws % Ws w 2wy 3w;g
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Data Reconstruction

e At low frequencies, the first-order hold approximates a
low-pass filter better than the zero-order hold.

For larger frequencies, the zero-order hold is a better
approximation.

e With respect to a sinuscidal input, good signal
reconstruction is achieved by
—a first-order hold if w1 <K wg/2.
—a zero-order hold if wy near wg/2.

©2002 M.C. Ramos
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e Sample signal output of a first-order hold.

Sample signal

amplitude

o
S
o
S
o
N
IS
S
o
N

e In practice, a zero-order hold is still widely used due to
its simplicity.

©2002 M.C. Ramos
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Data Reconstruction

e Fractional-order hold.

The first-order hold linearly extrapolates the next
ocutput value based on the approximate slope and the
current output value.

To reduce the error, only a fraction of the approximate
slope is used in a fractional-order hold.

en(t) = e(nT) + m(nT)(t —nT), nT <t < (n+1)T
where m(nT) is the fractional slope

ke(nT) — e[(n — 1)T]

m(nT) = ke/(nT) = =

for some k,0 < k£ < 1.
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Data Reconstruction

e The fractional-order hold transfer function is

_ G—Ts

() = (1 — ke T P (1 - )]

The above equation may be derived using a similar
technique as in the first-order hold case.

Magnitude plot

e Magnitude
plot of Gpi(s).
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Data Reconstruction

e Assuming a unit impulse input and e(—T) = 0, the
output e,(t) for some value k looks like
ei(t) eo(t)

unit impulse
(1) function

e For k = 0, we have a zerc-order hold.
For k = 1, we have a first-order hold.
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How are Things Actually Done?

e Analog-to-digital converters.
—counter ramp converter.
—tracking ADC.
—successive-approximation ADC.
—single-ramp converter.
—dual-ramp converter.

— parallel (flash) converter.

e Digital-to-analog converters.

Sampling and Reconstruction ©2002 M.C. Ramos
EE 233 UP EEE Department



Summary

e What are sampled data control systems?

e Ideal sampling characteristics.

e Starred transform E*(s) and its properties.

e Data reconstruction.
Zero-order, first-order and fractional-order data holds.
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