Simulation Graphs

e Discrete-time systems may be represented by a
difference equation or a transfer function.

It can also be represented by simulation diagrams.

e Basic element is a shift register.

e(k) shift e(k — 1) e(k) e(k — 1)
— . — — T F—
register

The value appearing at the input is shifted into the
register every T seconds. The number that is currently
stored is shifted out.
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Today’s EE 233 Lecture

Simulation Graphs

e Simulation diagrams.

e Flow graphs.

e Extracting state-space models.

e Similarity transformation and transfer functions.

e Summary.
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e Scolves the difference equation.

register A
e(k) e(k — 1)

&—» T

m(k)

register B

+ m(k) m(k — 1)
® T

Set register A to e(0) and
set register B to the initial condition m(0).

Output m(k) will be the solution to
m(k) = e(k) — e(k — 1) — m(k — 1)
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Simulation Graphs

e Example 1. Representing difference equations.

m(k) = e(k) — e(k — 1) — m(k — 1)

m(k)

e(k) e(k — 1)

o—»| T

-
L

+ m(k) m(k — 1)

Y
e

Interconnecting multiplication and summing devices
with the delay element (shift register) allows
representation of LTI difference equation.
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Simulation Graphs

Simulation Graphs

e(k) e(k — 1)

e Example 2.
Convert to
SEG.

E(z) M(z)

Recall Mason’s gain formula
which gives

EANVIHINIH z — 1

E(z) 1 21 z 4+ 1
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Simulation Graphs

e Example 3. Take the first-order system
m(k) = e(k) — e(k — 1) — m(k — 1)

e(k) e(k — 1)

A nonminimal
representation.

A minimal e(k) + M. - % m(k)
representation. ~ % ; ;
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m(k) m(k — 1)

Simulation Graphs

e Analog simulation in continucus-time uses integrators.
In discrete-time, the basic block is a time delay.

e Signal flow graphs can alsoc be used for graphical
representation of a discrete-time system.

E M E G M
—_— G |— O——»—0
R 1 E
R + E
- w c AHV 1% ¢
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e Many ways of representing a system.

— transfer function
—block diagram and signal flow graph

e Block diagram and signal flow graph representations of a
system is not unique.

Recall, an nth-order continuous-time system can be
represented with n integrators.

A minimal representation of an nth-order discrete-time
system contains n time delay elements.
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State Variables

e The system state at the (k + 1)th time instant is

w(k + 1) = fle(k), u(k)]

where x(k) is the current state and u(k) is the current
input.

e The system output response is

y(k) = glz(k), u(k)]
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State Variables

State Variables

e Transfer function representation for LTI DT systems.

E(2) M(2)

— G | M(z) = G(z)E(z)

e State variable representation.

state

w1 (k) > variables = yi(k) u(k) y(k)

u(k) g = y2(k) state vector
z; (k) Y x(k) >

: za(k) H

u (k) ——> m > (k)

z, (k)
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e Example 4. Find the state variable representation for a
system described by the difference equation

y(k + 2) = u(k) + L.7y(k + 1) — 0.72y(k)

e Let
z1(k) = y(k)
z2(k) = zi(k + 1) = y(k + 1)
Then
wo(k + 1) = y(k + 2)
= u(k) + 1.7y(k + 1) — 0.72y(k)
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State Variables

e For a linear system,

z(k + 1) = A(k)x(k) + B(k)u(k)
y(k) = C(k)z(k) + D(k)u(k)
where A(k), B(k), C(k) and D(k) are time-varying n x
n,n x r, px n and p X r matrices, respectively.

o If the system is LTI,

z(k + 1) = Axz(k) + Bu(k)
y(k) = Cz(k) + Du(k)
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State Variables

e Do we have to go through explicitly figuring ocut how to
assign the state variables every time we need a
state-space form?

Is there a standard procedure or form we can follow?

e We know we can go from the difference equation to the
transfer function by z-transform.

Consider the transfer function
OSIuNﬁIH + OSIMNilm 4+ ... + by
2" + ap—12" 1 4+ ... + ap

G(z) =
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State Variables

State Variables

e Writing in matrix form,

a;:rcn ﬁloo.qm HWTAE + TVTAE

y(k) = [1 OJz(k)

e State-space representation is crucial to the analysis of
control systems.

Moedern control system analysis techniques usually start
by expressing system models in state-space form.

Easy to change from state-space form to other forms
(such as transfer function or difference equations).
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e Noting the real transform property, we can assign state
variables as

E(z) — e(k) 2 z1(k)
2E(z) = ek + 1) = @ik + 1) 2 za(k)
22E(z) > ek + 2) = a2k + 1) 2 z3(k)

1E(2) IR ek + 1 — 1) = zp1(k + 1) 2 an(k)

Zz"E(z) > e(k + n) = xp(k + 1)

We now have the state equations for z;(k + 1),
t = 1,...,n — 1 in terms of other state variables.
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State Variables

e Introducing a dummy variable E(z) and using

G(z) = Y(2)/U(z),
Y(z) bp_12""' 4 bp_22""2 + ... + by E(2)
U(z) 2" + ap_1z2"1 + ... 4+ ag E(z)

e Splitting the above equation gives

Y (2) = (bp—12""' + bp_22""2 4+ ... + by)E(2)
U(z) = (2" 4+ an—1z2""! + ... + ag)E(2)
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State Variables

e In matrix form,

xz(k + 1) = Azx(k) + Bu(k)

where
z1(k) zi(k + 1)
1
zk) = |20 5 aw 1) = | D
xn (k) zn(k + 1)
0 1 0o ... 0 0
0 0 1 .. 0 0
A = 0 0 o ... 0 B = H
i 0
—ag —a1 —agz ... —ap—1 1
Ery it UP EEE Department

State Variables

State Variables

e Expanding and taking the inverse z-transform of

U(z) = (2" 4+ an_1z2""' + ... + ag)E(2)

gives us the state equation for zn(k + 1).
zn(k + 1) = —agz1(k) — ayzz(k) — ...
— ap—1zn(k) + u(k)

The rest of the state equations are simply,
z1(k + 1) = x3(k)
za2(k + 1) = z3(k)

zn—1(k + 1) = zn(k)
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e Consider again the transfer function
bp-12""1 + bp_22""2 + ... + b

z" + ap_1z"1 + ... + ag
n

G(z) =

Multiplying by z=" /2~
Y(z) bp_1z"! + bp_2z"2 + ... + bgz™" E(2)
U(z) 1 + ap—12~1 + ... + agz™" E(z)

, we can write

We can split this into two equations,
Y(2) = (bn—12"! + bp_22"2 + ... + boz ")E(2)
U(z) =1 + apn—1z"! + ... + apz M E(2)

= E(z) = U(2) — ap_12"'E(z) — ... — agz "E(2)
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State Variables

e The output equation is obtained by expanding and
taking the inverse z-transform of

Y(z) = (bn_12""' 4+ bp_22""2 + ... + bo)E(2)

which gives in matrix form,

z1(k)
k
y(k) = [bo b1 ... bp_1] .\SA )
or y(k) = Cz(k).
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State Variables

e Signal flow graph.

—ag

E(z) =U(z) — apn_12 'E(z) — ... — agz "E(z)
Y (z) = (bp—127! + bp_2272 + ... + byzTME(2)
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State Variables

e Simulation (block) diagram.

y(k)
m(+
bn_1 by bo
1 1 1
u(k) (k) @1 (k)
T [ —&----- - T > T
z,(k)
—Qn—1 |-
I
ey |
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State Variables

e Cbservable canonical form block diagram.

Y Y «
bo by bn-1
+ + + % y(k)
T T [ T »
_ + § - + 1 -
ag a, Ap_1

» A i
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State Variables

e The resulting state-space form previcusly considered is
commonly called the controllable canonical form.

Ancther standard form is the observable canonical form.
z(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
000...0 —ag bo
100...0 —aq b1
A = 010...0 —asy B = i
i bn—2
000...1 —ap_1 bn_1
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State Variables

e For the SFG,

U(2)
Y (2)
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State Variables

State Variables

e Example 5. Derive the SFG and state equations for

G(z) =

Y(z) 22 4+ 22 + 1
U(z) 23 + 222 + z 4+ 3

Standard form using controllable canonical form.

HHQA + Hv
HmQa + Hv
HwQa + Hv

Discrete-time Systems
EE 233

0 1 07 [zi(k) 0
= 0 0 1| |xz2(k)| + |0 u(k)
—3 -1 -2 | z3(k) 1
z1(k)
y(k) = [121] | z2(k)
z3(k)
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e Look at the SFG. by

State equations.
e 1] = (e [20] + [
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State Variables

e Example 6. Derive the SFG and state equations for
Y bez? + b b
G(z) = (2) _ b22° 4 b1z + bo

U(z) 22 + a1z + agp

Note that the numerator and the denominator have the
same order. Using a similar technique as before,

Y(z) by + biz7! + bpz7? E(z2)
U(z) 1+ a1z=! + agz—2 @ANV

which gives
E(z) = U(2) — a1z 'E(z) — apz 2E(2)

Yz — -1 =2
(2) b2E(z) 4+ b1z7 "E(z) + bgz” “E(z2)
how do you handle this?
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State Variables

wi(k) 4 z1(k) + yi(k)
e Example 7. T -ea
Determine the +
state equations
0.5 |-
from the block N
diagram.
& + ya(k)
T »(+
z3(k) +

ER R EE R

o] = [o3] (@] + [07) i)
ya2(k) 01| |z2(k) 01| [uz(k)
Pr gy e Systems S Paonner

State Variables

Other State Variable Formulations

e For the ocutput equation, use the SFG to get

Y(2) = bpX1(2) + b1X2(z) + b2E(z)
E(z) =U(2) = aoXi1(z) — a1X2(z)

Eliminating E(z) gives

Y (z) = bU(z) + (bp — b2ap)X1(z) + (b1 — baa1)X2(2)

Finally, the cutput equation is

QQAV = :00 — ONQOV AOH _ GMQHZ _HHHQQV

+ bsul(k
SNQA&% 2 A v
A transfer function with numerator and denominator of
the same orders may be handled in a similar manner.
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e Different representations for SISO DT systems.
—difference equation. —state-space form.

—transfer function. —block diagram and SFG.

e Specific applications.
—transfer function is important for control design based
on assigning poles and zeros.

—state-space form is good for simulations and locking at
internal variables.

—block diagram and SFG are useful for visualizing signal
flow within the system.
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State Variables

e State models may be derived from the a SFG or a block
diagrams by
—draw the SFG or block diagram.
—assign a state variable to each delay cutput.
—write the equation for each delay input and each
system output using only the delay ocutputs and the
system input.

e The transfer function is an input-output system model.

The state-space model gives an input-cutput relationship
along with an internal description of a system.

Which one is unique and which cone is not?
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Other State Variable Formulations

e Simulation @1 (k)
diagram
(parallel form).

y(k)

0.9

@a(k) +

0.8

z(k + 1) =

T% %Lacav = ﬁ:c:&
y(k) = [10 — 10]z(k)
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Other State Variable Formulations

e Example 8. Consider

ylk + 2) = u(k) — 1.7y(k + 1) — 0.72y(k)

Taking the z-transform to get the transfer function
Y(z) 1
U(z) 22 + 1.7z + 0.72
The transfer function can be expressed either as
Y(z) _ 10 + —10 parallel
U(z) z — 0.9 z — 0.8 form

Y (2) — 1 1 series

U AN v z — 0.9 z — 0.8 form
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or

Similarity Transformations

e Different state models exist for a given system?

How can we derive new (different) state models given a
state model for a system.

e Consider the state equation
z(k + 1) = Ax(k) + Bu(k)
y(k) = Cz(k) + Du(k)

e Apply a linear transformation on the state vector, i.e.,
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Other State Variable Formulations

e Simulation u(k) @2 (k) @1 (k) y(k)
diagram N T * +v x T r—
(series form). + A\% +

0.9 0.8
0.8 1 0
z(k + 1) = ﬁ 0 o.mL z(k) + ﬁwg u(k)

y(k) = [1 OJz(k)

e General forms.
parallel : G(z) = Gip(2) + Gop(z) + ... + Gpp(2)
series : G(z) = Gi15(2) - Ga5(2) + ...« Gps(2)
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Similarity Transformations

e The original state equations may now be written as
w(k + 1) = P"'APw(k) + P~ 'Bu(k)
y(k) = CPw(k) + Du(k)

or
w(k + 1) = Ayw(k) + Byu(k)
y(k) = Cww(k) + Dyu(k)
where
Ay = PTlAP B, = P~lB
Cyw = CP Dy = D

For each non-singular P, we have a different state model
for the same system.
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Similarity Transformations

Similarity Transformations

e Express the original states as linear combinations of the
new states.

z1(k) = priwi(k) + prawa(k) + ... + pipwn(k)
z2(k) = pa1wi(k) + p2ow2(k) + ... + papnwn(k)

H\;Qav ”%ﬁu\EHQ& + ﬁﬁmgwﬁnv + ... + ﬁ:zgﬁAkv

or concisely,
z(k) = Pw(k)

where P is an nxn non-singular matrix and w(k) is the
new state vector.
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e Properties of the similarity transformation.

—The determinant, trace and eigenvalues of the matrix
are invariant under the transformation.

—The transfer function is also unchanged.

ClzI — A]7'B + D = CylzI — Ay !By + Dy

e Example 9. Consider

z(k + 1) = T% %Lis + Eg:a

y(k) = [10 — 10ja(k)
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Similarity Transformations

e The characteristic equation of A is
|zI — Al = O

The eigenvalues z; are the roots of the characteristic
equation, i.e.,

|zI — A] = (s — z1)(s — 22)...(8s — zp) = O

e Under the similarity transformation A, = P 'AP,
|zI — Ay| =|2I — P71AP| = |zP~'IP — P7lAP|
= |P7Y||zI — A||P|
= |zI — A
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Similarity Transformations

e If the eigenvalues of the system are distinct, we can
come up with a similarity transformation to diagonalize
the system.

e If A is nxn, consider an n-vector m; and a scalar z; such
that

Am; = z;m;
We can write
(zI — A)m; = 0
For a nontrivial solution, |z;I — A| = 0.
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Similarity Transformations

Similarity Transformations

e Example 10. Consider

2k + 1) = T.m 1 0

0 o.@TAE T TT;E
y(k) = [1 O]z(k)

® We can use the Matlab eig function to determine the
eigenvalues and eigenvectors.

>> [M,Lambda] = eig([0.8 1; 0 0.9]1)

11 1 [1-10
§ITQLU§ IT:L
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Similarity Transformations

e Select a similarity transformation

_Jo 1 1 _ [101
P [ - - (1)

e This gives the new state-space model

T.m 1

Aw = | o 0.9

f By = T:“ sHTEEg

wike + 1) = % ol Jw + |5 uew

y(k) = [—10 110]w(k)
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e If z; are distinct eigenvalues and with corresponding
eigenvectors m;, we can form the matrix equation

z1 0 ... 0O
0 22... 0

0 O ...2z2n

Almy ma ... myp] = [m1 m2 ... mp]

or AM = MA.

e M is called the modal matrix. The inverse of M exists if
we have linearly independent eigenvectors z;. Thus, we
have a similarity transformation P = M that gives

A = M~lAM
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EE 233 UP EEE Department



Transfer Functions

e Extracted state-space model from the transfer function.
—using SFG or block diagrams.
—using z-transforms.
—standard forms from difference equation.

e How do we get the transfer function from the
state-space model?
—use SFG or block diagrams with Mason’s gain rule.
—using z-transforms.
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Similarity Transformations

e Using the P = M for the similarity transformation,
-~ . -1 |08 ©
Ay =A = M AM = ﬁo Q.ML
By, =M™"B = Twi

Cw=CM = [110]

e The new state model is

wie + 1) = |5 | wto + [ 0] ut)

y(k) = [1 10]w(k)

Discrete-time Systems
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Transfer Functions

e Using z-transform directly on the state equations.

z(k + 1) = Axz(k) + Bu(k)
= zX(z) — zz(0) = AX(z) + BU(z)

e Ignoring initial conditions and collecting terms.
[2I — A]X(z) = BU(z)
Solving for X (z) results in
X(z) + [2I — A7'BU(2)
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Transfer Functions

e Example 11. Derive the transfer function.

e 1= 225, 0% e+ [23] wen

y(k) = [1 —1Jz(k)
Mason’s gain rule gives

Y (2)
U(z)

1
22 — 172 + 0.72
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Transfer Functions

e Example 12. Consider the previous example.

ot = [ 42058 + 03] ueo

y(k) = [1 — 1]z (k)

e First compute [z — A]~L.

z — 1.35 —0.55
=1 — Al = ﬁ 0.45 z — o.uL
1 — 0.35 0.55
=L — A" = 22 — 1.7z + o.ﬂwﬁ —045 2z — H.wmg
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Transfer Functions

e From the output equation.

y(k) = Cxz(k) + Du(k)
= Y(z) = CX(z) + DU(z)

e Substituting the X (z) equation gives
Y(z) = TE — A™'B + D|U(»)
The system transfer function is
G(z) = C[z2I — A”'B + D
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Summary

e Simulation diagrams and signal flow graphs.

e Extracting state-space models.

e Standard forms from difference equations.

e Similarity transformation and transfer functions.
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Transfer Functions

e Forming the transfer function.

G(z) = ClzI — A]"'B

[11] ﬁ — 0.35 0.55 % T.J

22 — 1.7z + 0.72 —0.45 =z — 1.35 0.5
_ [1 1] 0.5z + 0.1
z2 — 1.7z + 0.72 0.5z — 0.9
1
22 — 1.7z + 0.72
By e Sy e Dearnaee



