Today’s EE 233 Lecture

Introduction

e Discrete-time systems.

e The z-transform.

e Properties of the z-transform.

e Solving difference equations and inverse z-transform.

e Summary.
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Introduction

e Discrete-time systems — difference equations.
Continuous-time systems — differential equations.

e Laplace transform is used in the analysis of LTI
continuous-time systems.

For LTT discrete-time systems - z-transform.

e Investigate discrete-time systems.
How does the familiar concept of transfer functions and
state equations carry over to DT systems?
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Introduction

e Consider a digital control system.

error
signal output

D/A 1 Plant

input
b digital
controller

A/D |—

Y

Sensor [%

e The digital controller is used to ”improve” system
response.

The controller interfaces through A/D and D/A
converters.
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e An A/D converter interfaces the error signal to the
digital controller.

A D/A converter converts the digital output of the
controller to an analog form necessary to drive the plant.

e Suppose that the A/D converter, digital controller and
D/A converter are to replace a PI controller.

Furthermore, let us say that we want the whole digital
system to function similar to that of the analog
counterpart.
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Introduction

e The analog output of the PI controller u(t) (which is
also the plant input) can be expressed as

t

u(t) = kpe(t) + 5\0 e(o)do

where e(t) is the error signal and kp and k; are design
constants.

e The above equation can be numerically realized by a
digital controller.
—multiply and add.
—integrate numerically.
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Introduction

e General form of a first-order LTI difference equation
(the T is understood and dropped for convenience).

z(k) = bie(k) + bge(k — 1) — agx(k — 1)

e General form of an nth-order LTT difference equation.

z(k) = bne(k) + bp_ie(k — 1) + ... + boe(k — n)
— ap—1z(k — 1) — ... — apx(k — n)
BEa 7 BB Dapartment

Introduction

e Consider numerical integration using the trapezocidal
rule. Let z(t) be the integral (numerical) of e(t), then

a(kT) = z[(k — 1)T] + w?@i + oe[(k — 1)T]}

where T is the step size of the algorithm.

e The output of the digital controller should then be
governed by the following first-order difference equation.

w(kT) = kpe(kT) + k;x(kT)
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Introduction

e For comparison, an nth-order differential equation locks
something like

d"e(t) de(t)
t) = bp—— b boe(t
() = ba— .~ + + bi— = + boe(t)
d"x(t) dxz(t)
an dim cee ap di

e A LTT continuous-time system may be modeled by an
nth-order differential equation.

A LTI discrete-time system can be modeled using the
nth-order difference equation.
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Designing Digital Controllers

e One approach.

Design an analog controller, and then ”convert” it to a
digital controller by numerically approximating the
performance of the analog control.

e Another approach.

Forget for the meantime about continucus-time control
design. Develop exact methods for dealing with
discrete-time systems.

We will take this route for EE 233.
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Designing Digital Controllers

e Transfer function is a filter.

The analog filter is usually implemented using a network
of op amps and other discrete RLC components.

e For discrete-time, the difference equation is realized by a
digital filter.

Digital computer or microcontroller, or special-purpose
hardware can be used.
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Designing Digital Controllers

e Continuous-time LTI system transfer functions have
poles and zeros. Take for example,
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Designing Digital Controllers

e The digital filter implementation boils down to the
—choosing the sampling period T,
—order of the difference equation n and
—determining the filter (difference equation) coefficients.

e Other issues.
—tradeoff between difference equation order n and
sampling period T'.
—accuracy, round-off errors and wordlength.
—noise and the differentiation cperation.
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Transform Methods

The z-transform

e Laplace transform useful in system analysis and design
of continuocus-time LTI systems.

Example. Determining the transfer function by taking
the Laplace transform of the differential equation model.

Y (s) _ bms™ + ... + bis + bg
E(s)  aps™ + ... + a1s + 1

e Since Laplace transform made cur lives easier when
dealing with continuocus-time systems, there must be
something similar for DT systems.

The z-transform. Will it make our DT lives easier?
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The z-transform

e The z-transform operates on number sequences.

The function E(z) is a power series in z~* with the
number sequence {e(k)} as coeflicients.

The transform pair can be expressed as

E(z) = Z[{e(k)} = e(0) + e(1)z7! + e(2)z72 + ...

1
|&@ANVN»TH&N“ j = /-1
T

e(k) = 27B()] = 4 -

where Z and Z~! denote the z-transform operation and
its inverse, respectively.
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The z-transform

e Concise notation.
o0

E(z) = Z[{e(k)}] = > e(k)z"

k=0

e The z-transform is defined for a sequence {e(k)}. For
convenience, the braces are dropped and the transform
is written as Z[e(k)].

e The z-transform is used the analysis of LTI systems
described by difference equations.
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e Not only control problems;
also used in discrete probability.

e General double-sided z-transform.
e @]

Gl{e(®)}] = Y elk)z™*

k=—o0

We will only use single-sided transform (also called
ordinary z-transform).
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The z-transform

The z-transform

e Example 1. Given E(z), find {e(k)}.
E(z) =1 + 3271 — 2272 4 74 4+ ..
Then, the number sequence {e(k)} is

e(0) =1 e(2) = —2 e(4)
e(l) = 3 e(d) =0 e(5) = ...

I
[y

e Consider the power series identity
1

=1+ax+ 2 +22+ ..., |z <1
1 — z
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The z-transform

e Example 2. Given e(k) = 1 for all k, find E(z).

BE(z) =1+ 271 + 272 + ..

e Note that {e(k)} may be the result of sampling a unit
step function.

However, other time functions may reveal the same
sequence when sampled every T seconds, and thus have
the same z-transform.
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Properties of the z-transform

e Example 3. Given e(k) = e T find E(2).

E(z)=1 4 e Tzl 4 e 20T,—2 4 |
=1+ (271 4 (e T271H2 4 ...
1 z
., _ —aTl _—1
1 — e aTy—1 5 _ ¢—al” € #l <1

e The region of existence for the z-transform is the
complex plane.
= important if using integral to find the transform.
= not of direct importance when using transform tables.
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e Linearity of the z-transform.

Addition and subtraction property. The z-transform of a
sum of number sequences is equal to the sum of the
z-transform of the sequences.

Zle1(k) £+ ea(k)] = Ei1(z) £ E3(z)

Multiplication by a constant property. The z-transform
of a number sequences multiplied by a constant is equal
to the constant multiplied by the z-transform of the
sequence.

Zlae(k)] = aE(z)

Discrete-time Systems (©2002 M.C. Ramos
EE 233 UP EEE Department



Properties of the z-transform

e Linearity. Z[ajei1(k) * azez(k)] = a1E1(z) £ azE2(z)
Proof. Let e(k) = ajej(k) + azez(k)
Zle(k)] = Z[a1e1(k) £ azea(k)]

= ) larei(k) + agez(k)]z"F
k=0

oo oo
= MU ajei(k)z=F + MU azes(k)z~F

= DumﬁmHan + Q\Nmﬁmmcﬂwz
= a1F1(2) £ asEs(2)
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Properties of the z-transform

e Proof (time delay). From the z-transform definition
Zle(k — n)u(k — n)]
= e(0)z " 4+ e(1)z— "D 4+ e2)z~ 2 4 ..
= 27 "e(0) + e(1)z™! + e(2)z72 + ...
= 2z  "E(2)

A time delayed function is simply
e(B)uk)l,  j_pn = e(k — nyu(k — n)
and moving e(k) forward in time gives

Zle(k)u(k)k « ktnl = Zle(k + nju(k + n)]
Zle(k + nju(k)]
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Properties of the z-transform

e Real translation.

Let n be a positive integer and E(z) = Z[e(k)]. Then,
Zle(k — n)u(k — n)] = z7"E(2)

and
n—1
Zle(k + n)u(k)] = 2" |E(z) — > e(k)z*
k=0
where u(k) is the discrete unit step function

0, k<0
::&HT“ k>0

Discrete-time Systems ©2002 M.C. Ramos
EE 233 UP EEE Department

Properties of the z-transform

e Proof (time advance). From the z-transform definition
Zle(k + m)u(k)]
= e(n) + e(n + Vz7! + e(n + 2)z72 + ...
= 27 "[e(0) + ez~ + ... + e(n — 1)z~
+ e(m)z™ + e(n + 1)z~ 4 |
— e(0) — e(1)z"! — e(n — 1)z~ (P

Collecting terms into E(z) and simplifying,

n—1
Zle(k + n)u(k)] = 2" |E(z) — > e(k)z™*
k=0
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Properties of the z-transform

e Example 4. Time-shifting.

k le(k) e(k — 2) ek + 2)
0| 2 0 1.3
1| 1.6 0 1.1
2 1.3 2 1.0
3 1.1 1.6
4 | 1.0 1.3

—the sequence e(k — 2)u(k — 2) basically contains the
same information as e(k).
—in e(k + 2)u(k), the first two values of e(k) are lost.
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Properties of the z-transform

Properties of the z-transform

e Example 5. Time-shifting.

NTéQ&VH::w _ mvmi _ -3 Tl%g

mlaﬂ
e Y
NTIE&Q
Z TI@@._.MVH:?HL
1
= 22|z TID»J — MU e(k)z~k
k=0

_ NM z _ AH + m|QH,_N|Hv

o z — e¢—aT
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Properties of the z-transform

e Definition. Discrete unit impulse function §(k — n).
_J1, kE=n
mQaI:vl ﬁf F.wmﬁ\

The z-transform of §(k — n) forn > 0is

Z[6(k = n)] = Ww% — n)zTk = zm
k=0

e The unit impulse function will be useful in
expressing/extracting discrete signals.

It is also referred as the unit sample function.
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e Complex translation. Z[e**e(k)] = E(ze™?).

Proof. From the z-transform definition
Z[ee(k)] = e(0) + %e(1)z"! + €2%(2)z72 + ...
= e(0) + e(1)(e %z)~!
+ e(2)(e™%)"2% + ...
= E(2)|, . ,e-a = E(ze79)

Example 6. What is the z-transform of e(k) = ke 2k,

E(2)| z ze 2
z _ = — —=]
ozt (z — va 2z «— ze @ (zem2 — va
(S — A
Z[{k}]
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Properties of the z-transform

Properties of the z-transform

e Initial value property.

e(0) = lim E(z)

zZ—>00

Proof. E(z) = e(0) + e(1)z~! 4+ e(2)z72 + ...

e Final value property.
:FEoomASV = N__IVEHAN — 1)E(2z)

provided that the left-side limit exists.
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Properties of the z-transform

e Proof (final value property).
Consider that e(k) is of length n where n — oo.
For z — 1, most Z[e(k + 1) — e(k)] terms cancel.
Zle(h + 1) ~ e(®)]loyy = Jim [~e(0) + e(n)]
Also, from the real translation property,
Zle(k + 1) — e(k)] = z[E(z) — e(0)] — E(z)
= (z — 1)E(z) — ze(0)

Equating the above z-transform results, taking the limit
as z — 1 and eliminating e(0) gives

:FEoomsz = N__IV_BHAN — 1)E(2)
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Properties of the z-transform

e Example 7. The sequence e(k) = 1, k = 0,1,2,... has
the following z-transform.

z
E(z) = Z2[1] = ——
z — 1
We can verify e(0) using the initial value property.
. z . 1
e0) = lim — = lim —— =1
z—ooz — 1 z—o0l — 1/z

Since e(k — o0) exists, the final value property gives

. . \N -
lim e(k) = lim(z — 1)—— = limz = 1
k—oo z—1 z — 1 z—1
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e Summary of z-transform properties.

oo

e(k) & E(z) = ) e(k)z*

k=0
arer(k) £ azes(k) <&  a1E1(z) £ azE3(2)

e(k — nu(k — n) & z "E(z)
n—1
e(k + nju(k) < 2" |E(z) — Y e(k)z"F
k=0
e%e(k) & E(ze™?)
. e —



Properties of the z-transform

Solving Difference Equations

e Summary of z-transform properties.

dE(z)
\A@AN&V =4 |Nﬂ
ei(k) * ex(k) & E(2) E2(2)
k
ei(k) = > e(n) & Ei(z) = UHANV
n=0
Initial value : e(0) = N—meo E(z)
Final value : :_mlwsoomﬁﬁv = :IVEHAN — 1)E(2)
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Solving Difference Equations

e Continuous-time domain - to solve differential equations,
—classical approach.
— Laplace transforms.

We most certainly preferred using the Laplace transform
approach in discussions on CT LTI control systems.

e In the discrete-time control systems, we need to sclve
difference equations.
—particular and homogenecus sclutions.
—sequential (simulation) technique.
— z-transform and inverse z-transform.
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Solving Difference Equations

e Classical-like approach.

Along the same lines as solving differential equations.

e Simulation technique.

Remember using ode23 in Matlab.
Simulation in discrete-time is easy enough if you know a
bit of programming and Matlab.

Example. m(k) = e(k) — e(k — 1) — m(k — 1)

Assuming e(k) is known, just start with k¥ = 1 and
compute new values of m(k) sequentially.
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e Using z-transforms. Consider the nth-order difference
equation

m(k) + ap—1m(k — 1) + ... + agm(k — n)
= bpe(k) + bp_1e(k — 1) + ... + bge(k — n)

e Making use of the real translation property gives
M(z) + ap_127'M(2) + ... + apz "M(z)
= bpE(z) + bp_12 'E(z) + ... + bpz "E(2)

Difference equation is now a simple algebraic equation.
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Solving Difference Equations

e Solving for M (z).

bn + bp_1z71 + ... + bgz™"
1 + ap_1z7! + ... + apz™™"

M(z) = E(z)

e Assuming e(k) (consequently, F(z)) is known, m(k) can
be found by inverse z-transform.
— power series method.
— partial-fraction exapnsion method.
—inversion formula method.
—discrete convolution.
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Solving Difference Equations

Solving Difference Equations

e The z-transform of e(k) is

E(z)=1+ 272 + 274 + ...

1 22 22

1 — 272 22 — 1 (z — 1)(z + 1)

e Thus,
z —1 22 22
M(z) = . = —
z+1 (z — 1)(z + 1) z4 4+ 2z + 1
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e Example 8. Given the difference equation
m(k) = e(k) — e(k — 1) — m(k — 1)

1, k even

find {m(k)} for e(k) = Ao“ k odd

e Using the real translation property.

M(z) = E(z) — 2z E(z) — 27 'M(2)

M(z) = mm@
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Solving Difference Equations

e Expanding intc a power series.
1 — 2271 + 3272 — 4273 + ...
22 + 22 + 1|22

22 + 2z + 1
— 2z — 1
— 2z — 4 — 2271
3 + 2271
3 + 62-1 + 3272
— 4271 _ 3,72

M(z) =1 — 2270 4 3272 — 4273 4+ ...
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Solving Difference Equations

e Thus {m(k)} = {1, —2, 3, —4, ...}.

e Verifying using the sequential solution.

1, £k even

Assuming m(—1) = 0 and since e(k) = ﬁo k odd
b

m(k) =e(lk) — e(k — 1) — m(k — 1)

m(0) =e(0) — e(-1) —m(—-1) =1 -0 -0 =1

Power Series Method

m(l) =e(1l) — e0) — m0) =0 -1 -—1= —2
m(2) =e(2) —e(l) — m(1) =1 -0+ 2 = 3
m3) =eB) —e2) —m(2) =0-1 -3 = —4
E UP EEE Depurtient
Power Series Method
z
e Example 9. Given E(z) = , find e(k).

zZ — 3z + 2

27V 4 3272 4 7273 4 15274 + ...

e Find the inverse z-transform by expressing E(z) as a
power series in z.

E(z) = eg + e1z”™ ! + ez % +

e Power series can be found by performing the division of
the fractional polynomial expression of E(z).

N(z) <« polynomial numerator
D(z) « polynomial denominator

E(z) =

e Coefficients of E(z) power series are the values of {e(k)}.
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Power Series Method

3 — 9271 4 6272

7271 — 6272
7271 — 21,72 + 1423
15272 — 14272
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e Thus, E(z) can be expressed as

E(z) = z7' 4+ 3272 4+ 7273 4+ 15274 + ...

which results in

e(0) =0 e(4) = 15
e(1) =1
e(2) = 3 e(k) = 2F — 1
ed) =7
e Closed-form expression is e(k) = 2k _ 1.

In general, a closed-form expression can not be identified
using the power series method.
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Partial-fraction Expansion Method

e Use partial-fraction expansion along with common

z-transform pairs.

e Some z-transform pairs.

1
o0k —n)&e 27" k2 AquAN + 1
(z — 1)2
1 = z @wﬁv z
z — 1 zZ — a
\ﬂ AHV% NQ\\AAHV%
(z — 1)2 (2 — a)?

©2002 M.C. Ramos
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EE 233

Partial-fraction Expansion Method

z
E le 10. Gi E = find e(k).
e Example iven E(z) 2 3, 1 2 nd e(k)
z
FE =
G =Gy
E(z) 1 I S
z  (z—-1(z-2 =z -1 z — 2

e Taking the inverse z-transform gives

NLENV_”NL ﬁﬂg +ml ﬁwg

= e(k) = —1 + 2F

Discrete-time Systems
EE 233
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Partial-fraction Expansion Method

e Notice that the factor z appears in the numerator of the

transforms.
= partial-fraction expansion is performed on E(z)/z.

e Additional z-transform pairs.
zsina

sinak & 2
z4 — 2zcosa + 1

z(z —cosa)
z2 — 2zcosa + 1

cosak &

©2002 M.C. Ramos
UP EEE Department

Discrete-time Systems
EE 233

Partial-fraction Expansion Method

1
E le 11. Gi E = , find e(k).
e Example iven E(z) 2 _ 3. 1 2 nd e(k)
E(z) 1 1 ~1 1
= = — + +
z z(z — 1)(z — 2) 2z z — 1 z — 2
= E(2) 1 n —z 4 1 z
2) = — —
2 z — 1 2 z — 2
1
= e(k) = J6(k) = 1 + 2k—1

Use the real translation property to verify using the
result from the previous example.
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Inversion Formula Method

e Cauchy’s residue theorem (complex theory).
n
& f(z)dz = j2= MU Res(z;)
r :
=1

where the z;’s are poles of f(z).
The residue Res(z;) of pole z; of multiplicity m; is

3~.|”_.
L 4"~ zymif(e)

Res(z) = N_V:ws. (m; — 1)!dz™:

e There is a relationship between the value of the contour
integral and the poles that reside within the contour.

©2002 M.C. Ramos
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Inversion Formula Method

Inversion Formula Method

e How does Cauchy’s residue thecrem help us?
Recall e(k) can be expressed as

et) = 2B = 5§ BE)F Tz § = VT

27j

e Thus, using the residue theorem we get

(z — 1)(z — 2)

e Example 12. Given E(z) = , find e(k).

z k—1 NN

E(2)zF1 = z =
(z — )(z — 2) (z — )(z — 2)

® E(z)z*~1 has simple poles at z = {1,2}. Thus,

e(k) = —— + Ny = —1 + 2*
2

N
Il
—
N
Il
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e(k) = MU Tomacmm of MANVN»TJ
at poles of
E(z)zF1
simple pole _ . B k—1
at » — a Res(z = a) = (= a)E(z)z —a
B P BEE Departmon
Inversion Formula Method
. 1
e Example 13. Given E(z) = , find e(k).

(z — )(z — 2)
For k = 0, the E(z)z¥~! has a pole at z = 0. Thus,

1
e(0) = Tmmacmm of
NHMOUPM z(z — 1)(z — 2)
O
= 3 > 3
For £k > 1,
k—1 k-1
z z
e(k) = ——— + = = =1 + 21
z — 2 z — 1
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Inversion Formula Method

z
e Example 14. Given E(z) = —  , find e(k).
(z — 1)2
We only have one pole at z = 1 with multiplicity 2.
From the definition of a residue,

1 dz—1 z
2 k-1
e \ﬁ = z — 1 . .z
(k) (2 — 1)!dz2-1 T ) (z — 1)2 g
d
= 2k = kzk1
dz z=1 z=1
=k
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Discrete Convolution Method

Discrete Convolution Method

z=1

e Which expands into
E(z) = e1(0)e2(0) + [e1(0)ex(1) + e1(1)ez(0)]z™"
+ [e1(0)e2(2) + e1(1)ez(1) + e1(2)ez(0)]z~2
+ ..

e Thus, the sequence e(k) can be expressed as
e(k) = e1(0)ea(k) + er(l)ea(k — 1) + ...
+ e1(k — 1)e2(1) + ei1(k)e2(0)

k k
= MU ei(n)ea(k — n) = MU e1(k — n)ea(n)
Discrete-time Systems (©2002 M.C. Ramos
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e Determine the inverse z-transform by expressing E(z) as
a product of two simple functions.

E(z) = E1(2)E2(2)

e Presumably, it will easier to take the inverse
z-transforms of E1(z) and E3(z).

Using the power series expansion of Fq(z) and F3(z),
E(z) = [e1(0) + ez + e1(2)272 + ... [ea(0)
+ ex(1)z7! + e3(2)27% + .. M
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Discrete Convolution Method

e Discrete convolution is usually dencted as

e(k) = Z7E(2)E2(2)] = ei(k) * ea(k)

e Example 15. Given E(z) = , find e(k).

(z — D(z — 2)
Decomposing E(z) into E(z) = FEj(z)E2(z) gives

z
Ei(z) =———— =1+ 27! 4+ 272 4+ ...
z — 1

Eo(z) = —— = 271 4 2272 4 22273 4 ..
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Discrete Convolution Method Summary

e Then, e(k) can be computed for every £k = 0,1,2,.... e Overview of discrete-time systems.
For example, e(2) can be calculated as How are they different from continucus-time systems?
2
e(2) = Y ei(n)ea(2 — n)
A ® The z-transform and its properties.

= e1(0)e2(2) + ei(l)ez(1l) + e1(2)ez(0)

=1-2 4+ 1-1 4+ 1-0 = 3
e What are difference equations and how to solve them.

e Other values of e(k) can be computed similarly.
e The inverse z-transform and techniques for determining
the inverse z-transform.
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