Today's EE 233 Lecture

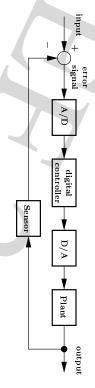
- Discrete-time systems.
- \bullet The z-transform.
- Properties of the z-transform.
- Solving difference equations and inverse z-transform.
- Summary.

Discrete-time Systems EE 233

©2002 M.C. Ramos UP EEE Department

Introduction

• Consider a digital control system



• The digital controller is used to "improve" system

The controller interfaces through A/D and D/A converters.

Discrete-time Systems EE 233 ©2002 M.C. Ramos UP EEE Department

Introduction

- Discrete-time systems → difference equations Continuous-time systems \rightarrow differential equations.
- Laplace transform is used in the analysis of LTI continuous-time systems.

For LTI discrete-time systems - z-transform

• Investigate discrete-time systems. state equations carry over to DT systems? How does the familiar concept of transfer functions and

©2002 M.C. Ramos UP EEE Department

Introduction

- An A/D converter interfaces the error signal to the digital controller.
- controller to an analog form necessary to drive the plant. A D/A converter converts the digital output of the
- Suppose that the A/D converter, digital controller and D/A converter are to replace a PI controller.

system to function similar to that of the analog counterpart. Furthermore, let us say that we want the whole digital

Discrete-time Systems EE 233 ©2002 M.C. Ramos UP EEE Department

Introduction

ullet The analog output of the PI controller u(t) (which is also the plant input) can be expressed as

$$u(t) \ = \ k_P e(t) \ + \ k_i \int_0^{\epsilon} e(\sigma) d\sigma$$

where e(t) is the error signal and k_p and k_i are design constants.

- The above equation can be numerically realized by a digital controller.
- -multiply and add.
- -integrate numerically.

233

©2002 M.C. Ramos UP EEE Department

Introduction

 \bullet General form of a first-order LTI difference equation (the T is understood and dropped for convenience).

$$x(k) = b_1 e(k) + b_0 e(k-1) - a_0 x(k-1)$$

• General form of an nth-order LTI difference equation.

$$x(k) = b_n e(k) + b_{n-1} e(k-1) + \dots + b_0 e(k-n) - a_{n-1} x(k-1) - \dots - a_0 x(k-n)$$

Discrete-time Systems ©2002 M.C. Ramos EE 233 UP EEE Department

Introduction

• Consider numerical integration using the trapezoidal rule. Let x(t) be the integral (numerical) of e(t), then

$$x(kT) = x[(k-1)T] + \frac{T}{2}\{e(kT) + e[(k-1)T]\}$$

where T is the step size of the algorithm.

• The output of the digital controller should then be governed by the following first-order difference equation.

$$u(kT) = k_p e(kT) + k_i x(kT)$$

Discrete-time Systems EE 233

©2002 M.C. Ramos UP EEE Department

Introduction

ullet For comparison, an nth-order differential equation looks something like

$$x(t) = b_n rac{d^n e(t)}{dt^n} + \ldots + b_1 rac{de(t)}{dt} + b_0 e(t) \ - a_n rac{d^n x(t)}{dt^n} - \ldots - a_0 rac{dx(t)}{dt}$$

• A LTI continuous-time system may be modeled by an *n*th-order differential equation.

A LTI discrete-time system can be modeled using the *n*th-order difference equation.

Discrete-time Systems

Designing Digital Controllers

One approach.

Design an analog controller, and then "convert" it to a digital controller by numerically approximating the performance of the analog control.

• Another approach.

Forget for the meantime about continuous-time control design. Develop exact methods for dealing with discrete-time systems.

We will take this route for EE 233.

233

©2002 M.C. Ramos UP EEE Department

Designing Digital Controllers

• Transfer function is a filter.

The analog filter is usually implemented using a network of op amps and other discrete RLC components.

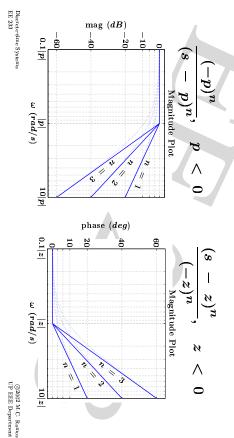
• For discrete-time, the difference equation is realized by a digital filter.

Digital computer or microcontroller, or special-purpose hardware can be used.

Discrete-time Systems ©2002 M.C. Ramos EE 233 UP EEE Department

Designing Digital Controllers

• Continuous-time LTI system transfer functions have poles and zeros. Take for example,



Designing Digital Controllers

- The digital filter implementation boils down to the
- choosing the sampling period T,
- order of the difference equation n and
- -determining the filter (difference equation) coefficients.
- Other issues.
- tradeoff between difference equation order n and sampling period T.
- accuracy, round-off errors and wordlength.
- noise and the differentiation operation.

Transform Methods

• Laplace transform useful in system analysis and design of continuous-time LTI systems.

Example. Determining the transfer function by taking the Laplace transform of the differential equation model.

$$rac{Y(s)}{E(s)} = rac{b_m s^m + \ldots + b_1 s + b_0}{a_n s^n + \ldots + a_1 s + 1}$$

• Since Laplace transform made our lives easier when dealing with continuous-time systems, there must be something similar for DT systems.

The z-transform. Will it make our DT lives easier?

E 233

©2002 M.C. Ramos UP EEE Department

The z-transform

• Concise notation.

$$E(z) \ = \ {\cal Z}[\{e(k)\}] \ = \ \sum_{k=0}^{\infty} e(k) z^{-k}$$

- The z-transform is defined for a sequence $\{e(k)\}$. For convenience, the braces are dropped and the transform is written as $\mathcal{Z}[e(k)]$.
- The z-transform is used the analysis of LTI systems described by difference equations.

Discrete-time Systems ©2002 M.C. Ramos EE 233 UP EEE Department

The z-transform

 \bullet The z-transform operates on number sequences.

The function E(z) is a power series in z^{-k} with the number sequence $\{e(k)\}$ as coefficients.

The transform pair can be expressed as

$$E(z) = \mathcal{Z}[\{e(k)\}] = e(0) + e(1)z^{-1} + e(2)z^{-2} + \dots$$

$$e(k) \ = \ {\cal Z}^{-1}[E(z)] \ = \ rac{1}{2\pi j} \oint_{\Gamma} E(z) z^{k-1} dz, \quad j \ = \ \sqrt{-1}$$

where \mathcal{Z} and \mathcal{Z}^{-1} denote the z-transform operation and its inverse, respectively.

Discrete-time Systems EE 233

©2002 M.C. Ramos UP EEE Department

The z-transform

- Not only control problems;
 also used in discrete probability.
- General double-sided z-transform.

$$G[\{e(k)\}] = \sum_{k=-\infty}^{\infty} e(k)z^{-k}$$

We will only use single-sided transform (also called ordinary z-transform).

The z-transform

• Example 1. Given E(z), find $\{e(k)\}$.

$$E(z) = 1 + 3z^{-1} - 2z^{-2} + z^{-4} + \dots$$

Then, the number sequence $\{e(k)\}$ is

$$e(0) = 1$$
 $e(2) = -2$ $e(4) = 1$
 $e(1) = 3$ $e(3) = 0$ $e(5) = .$

Consider the power series identity

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots, |x| < 1$$

Discrete-time Systems EE 233

©2002 M.C. Ramos UP EEE Department

The z-transform

• Example 3. Given $e(k) = e^{-akT}$, find E(z).

$$E(z) = 1 + \epsilon^{-aT}z^{-1} + \epsilon^{-2aT}z^{-2} + \dots$$

$$= 1 + (\epsilon^{-aT}z^{-1}) + (\epsilon^{-aT}z^{-1})^{2} + \dots$$

$$= \frac{1}{1 - \epsilon^{-aT}z^{-1}} = \frac{z}{z - \epsilon^{-aT}}, |\epsilon^{-aT}z^{-1}| < 1$$

- The region of existence for the z-transform is the complex plane.
- ⇒ important if using integral to find the transform. ⇒ not of direct importance when using transform tables.

Discrete-time Systems ©2002 M.C. Ramos
EE 233 UP EEE Department

The z-transform

• Example 2. Given e(k) = 1 for all k, find E(z).

$$E(z) = 1 + z^{-1} + z^{-2} + \dots$$

$$= \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}, |z^{-1}| < 1$$

• Note that $\{e(k)\}$ may be the result of sampling a unit step function.

However, other time functions may reveal the same sequence when sampled every T seconds, and thus have the same z-transform.

EE 233

©2002 M.C. Ramos UP EEE Department

Properties of the z-transform

• Linearity of the z-transform.

Addition and subtraction property. The z-transform of a sum of number sequences is equal to the sum of the z-transform of the sequences.

$$\mathcal{Z}[e_1(k) \pm e_2(k)] = E_1(z) \pm E_2(z)$$

Multiplication by a constant property. The z-transform of a number sequences multiplied by a constant is equal to the constant multiplied by the z-transform of the sequence.

$$\mathcal{Z}[ae(k)] = aE(z)$$

• Linearity. $\mathcal{Z}[a_1e_1(k) \pm a_2e_2(k)] = a_1E_1(z) \pm a_2E_2(z)$

Proof. Let
$$e(k) = a_1 e_1(k) \pm a_2 e_2(k)$$

$$\mathcal{Z}[e(k)] = egin{array}{c} \mathcal{Z}[a_1e_1(k) \ \pm \ a_2e_2(k)] \end{array}$$

$$= oldsymbol{arkappa}[a_1e_1(k) \,\pm\, a_2e_2(k)] = \sum_{k=0}^{\infty} [a_1e_1(k) \,\pm\, a_2e_2(k)]z^{-k}$$

$$=\sum_{k=0}^{\infty}a_1e_1(k)z^{-k}~\pm~\sum_{k=0}^{\infty}a_2e_2(k)z^{-k}$$

$$k=0 \ k=0 \ = a_1 \mathcal{Z}[e_1(k)] \, \pm \, a_2 \mathcal{Z}[e_2(k)]$$

$$= a_1 E_1(z) \pm a_2 E_2(z)$$

©2002 M.C. Ramos UP EEE Department

Properties of the z-transform

• Proof (time delay). From the z-transform definition $\mathcal{Z}[e(k-n)u(k-n)]$ $= e(0)z^{-n} + e(1)z^{-(n+1)} + e(2)z^{-(n+2)} + \dots$ $= z^{-n}[e(0) + e(1)z^{-1} + e(2)z^{-2} + \dots]$ $= z^{-n}E(z)$

A time delayed function is simply

$$e(k)u(k)|_{k \leftarrow k-n} = e(k - n)u(k - n)$$

and moving e(k) forward in time gives

$$egin{aligned} \mathcal{Z}[e(k)u(k)|_k \leftarrow_{k+n}] &= \mathcal{Z}[e(k+n)u(k+n)] \ &= \mathcal{Z}[e(k+n)u(k)] \end{aligned}$$

©2002 M.C. Ramos UP EEE Department

Properties of the z-transform

• Real translation

Let n be a positive integer and $E(z) = \mathcal{Z}[e(k)]$. Then,

$$\mathcal{Z}[e(k-n)u(k-n)] = z^{-n}E(z)$$

and

$$\mathcal{Z}[e(k \ + \ n)u(k)] \ = \ z^n \left[E(z) \ - \ \sum_{k=0}^{n-1} e(k)z^{-k}
ight]$$

where u(k) is the discrete unit step function

$$u(k) = \begin{cases} 0, & k < 0 \\ 1, & k \ge 0 \end{cases}$$

©2002 M.C. Ramos UP EEE Department

Properties of the z-transform

ullet Proof (time advance). From the z-transform definition

$$\mathcal{Z}[e(k+n)u(k)]
= e(n) + e(n+1)z^{-1} + e(n+2)z^{-2} + \dots
= z^{-n}[e(0) + e(1)z^{-1} + \dots + e(n-1)z^{-(n-1)}
+ e(n)z^{-n} + e(n+1)z^{-(n+1)} + \dots
- e(0) - e(1)z^{-1} - e(n-1)z^{-(n-1)}]$$

Collecting terms into E(z) and simplifying,

$$\mathcal{Z}[e(k + n)u(k)] \ = \ z^n \left[E(z) - \sum_{k=0}^{n-1} e(k)z^{-k}
ight]$$

• Example 4. Time-shifting

:	4	ယ	2	1	0	k
: 4	1.0	1.1	1.3	1.6	2	e(k)
:	1.3	1.6	2	0	0	e(k-2)
:			1.0	1.1	1.3) e(k + 2)

- -the sequence e(k-2)u(k)same information as e(k). 2) basically contains the
- -in e(k + 2)u(k), the first two values of e(k) are lost.

©2002 M.C. Ramos UP EEE Department

Properties of the z-transform

• Definition. Discrete unit impulse function $\delta(k-n)$.

$$\delta(k-n) = \begin{cases} 1, & k=1\\ 1, & k\neq 1 \end{cases}$$

The z-transform of $\delta(k-n)$ for $n\geq 0$ is

$${\cal Z}[\delta(k\,-\,n)] \;=\; \sum_{k=0}^{\infty} \delta(k\,-\,n) z^{-k} \;=\; z^{-n}$$

• The unit impulse function will be useful in expressing/extracting discrete signals.

It is also referred as the unit sample function.

©2002 M.C. Ramos UP EEE Department

Properties of the z-transform

• Example 5. Time-shifting.

$$egin{aligned} egin{aligned} egi$$

Discrete-time Systems EE 233

©2002 M.C. Ramos UP EEE Department

Properties of the z-transform

• Complex translation. $\mathcal{Z}[\epsilon^{ak}e(k)] = E(z\epsilon^{-a}).$

Proof. From the z-transform definition
$$\begin{split} \mathcal{Z}[\epsilon^{ak}e(k)] &= e(0) \; + \; \epsilon^a e(1)z^{-1} \; + \; \epsilon^{2a}e(2)z^{-2} \; + \; \dots \\ &= e(0) \; + \; e(1)(\epsilon^{-a}z)^{-1} \\ &+ \; e(2)(\epsilon^{-a}z)^{-2} \; + \; \dots \\ &= E(z)|_{z \; \leftarrow \; z\epsilon^{-a}} \; = \; E(z\epsilon^{-a}) \end{split}$$

Example 6. What is the z-transform of e(k) $= k\epsilon^{-ak}$

$$|E(z)|_{z}\leftarrow z\epsilon^{-a} = \left.rac{z}{(z-1)^2}
ight|_{z}\leftarrow z\epsilon^{-a} = rac{z\epsilon^{-a}}{(z\epsilon^{-a}-1)^2}$$

Discrete-time Systems EE 233

• Initial value property.

$$e(0) = \lim_{z \to \infty} E(z)$$

Proof.
$$E(z) = e(0) + e(1)z^{-1} + e(2)z^{-2} + \dots$$

• Final value property.

$$\lim_{n\to\infty} e(n) = \lim_{z\to 1} (z-1)E(z)$$

provided that the left-side limit exists.

233

©2002 M.C. Ramos UP EEE Department

Properties of the z-transform

• Example 7. The sequence e(k) = 1, k = 0, 1, 2, ... has the following z-transform.

$$E(z) = \mathcal{Z}[1] = \frac{z}{z-1}$$

We can verify e(0) using the initial value property.

$$e(0) = \lim_{z \to \infty} \frac{z}{z - 1} = \lim_{z \to \infty} \frac{1}{1 - 1/z} =$$

Since $e(k \to \infty)$ exists, the final value property gives

$$\lim_{k \to \infty} e(k) \ = \ \lim_{z \to 1} (z \ - \ 1) \frac{z}{z \ - \ 1} \ = \ \lim_{z \to 1} z \ = \ 1$$

Discrete-time Systems ©2002 M.C. Ramos EE 223 UP EEE Department

Properties of the z-transform

• Proof (final value property).

Consider that e(k) is of length n where $n \to \infty$. For $z \to 1$, most $\mathbb{Z}[e(k+1) - e(k)]$ terms cancel.

$$\mathcal{Z}[e(k+1) - e(k)]|_{z \to 1} = \lim_{n \to \infty} [-e(0) + e(n)]$$

Also, from the real translation property,

$$\mathcal{Z}[e(k+1) - e(k)] = z[E(z) - e(0)] - E(z)$$

= $(z-1)E(z) - ze(0)$

Equating the above z-transform results, taking the limit as $z \to 1$ and eliminating e(0) gives

$$\lim_{n \to \infty} e(n) = \lim_{z \to 1} (z - 1)E(z)$$

Discrete-time Systems EE 233

©2002 M.C. Ramos UP EEE Department

Properties of the z-transform

• Summary of z-transform properties.

$$e(k)$$
 \Leftrightarrow $E(z) = \sum_{k=0}^{\infty} e(k)z^{-k}$
 $a_1e_1(k) \pm a_2e_2(k) \Leftrightarrow a_1E_1(z) \pm a_2E_2(z)$
 $e(k-n)u(k-n) \Leftrightarrow$ $z^{-n}E(z)$
 $e(k+n)u(k) \Leftrightarrow z^n \left[E(z) - \sum_{k=0}^{n-1} e(k)z^{-k} \right]$
 $\epsilon^{ak}e(k) \Leftrightarrow E(z\epsilon^{-a})$

Summary of z-transform properties

$$ke(k) \qquad \Leftrightarrow \qquad -z \frac{dE(z)}{dz} \ e_1(k) * e_2(k) \qquad \Leftrightarrow \qquad E_1(z) E_2(z)$$

$$e_1(k)*e_2(k) \Leftrightarrow E_1(z)E_2(z)$$
 $e_1(k) = \sum_{k} e(n) \Leftrightarrow E_1(z) = rac{z}{z-1}E(z)$

-E(z)

Initial value :
$$e(0) = \lim_{z \to \infty} E(z)$$

Final value:
$$\lim_{n\to\infty} e(n) = \lim_{z\to 1} (z-1)E(z)$$

©2002 M.C. Ramos UP EEE Department

Discrete-time Systems EE 233

Solving Difference Equations

• Classical-like approach.

Along the same lines as solving differential equations.

- Simulation technique
- Remember using ode23 in Matlab.

bit of programming and Matlab. Simulation in discrete-time is easy enough if you know a

Example.
$$m(k) = e(k) - e(k-1) - m(k-1)$$

compute new values of m(k) sequentially. Assuming e(k) is known, just start with k =

Discrete-time Systems EE 233 ©2002 M.C. Ramos UP EEE Department

Solving Difference Equations

- Continuous-time domain to solve differential equations,
- classical approach.
- Laplace transforms.

approach in discussions on CT LTI control systems. We most certainly preferred using the Laplace transform

- In the discrete-time control systems, we need to solve difference equations.
- -particular and homogeneous solutions.
- -sequential (simulation) technique.
- -z-transform and inverse z-transform.

©2002 M.C. Ramos UP EEE Department

Solving Difference Equations

• Using z-transforms. Consider the nth-order difference equation

$$m(k) + a_{n-1}m(k-1) + \dots + a_0m(k-n)$$

= $b_ne(k) + b_{n-1}e(k-1) + \dots + b_0e(k-n)$

Making use of the real translation property gives

$$M(z) + a_{n-1}z^{-1}M(z) + \dots + a_0z^{-n}M(z)$$

= $b_nE(z) + b_{n-1}z^{-1}E(z) + \dots + b_0z^{-n}E(z)$

Difference equation is now a simple algebraic equation.

Discrete-time Systems EE 233

Solving Difference Equations

• Solving for M(z).

$$M(z) = rac{b_n + b_{n-1}z^{-1} + \ldots + b_0z^{-n}}{1 + a_{n-1}z^{-1} + \ldots + a_0z^{-n}} E(z)$$

- Assuming e(k) (consequently, E(z)) is known, m(k) can be found by inverse z-transform.
- -power series method.
- -partial-fraction exapnsion method.
- -inversion formula method.
- -discrete convolution.

screte-time Systems 2 233

©2002 M.C. Ramos UP EEE Department

Solving Difference Equations

ullet The z-transform of e(k) is

$$E(z) = 1 + z^{-2} + z^{-4} + \dots$$

$$= \frac{1}{1 - z^{-2}} = \frac{z^2}{z^2 - 1} = \frac{z^2}{(z - 1)(z + 1)}$$

• Thus,

$$M(z) = \frac{z-1}{z+1} \cdot \frac{z^2}{(z-1)(z+1)} = \frac{z^2}{z^2+2z+1}$$

©2002 M.C. Ramos UP EEE Department

Discrete-time Systems EE 233

Solving Difference Equations

• Example 8. Given the difference equation

$$m(k) = e(k) - e(k - 1) - m(k - 1)$$
find $\{m(k)\}$ for $e(k) = \begin{cases} 1, & k \text{ even} \\ 0, & k \text{ odd} \end{cases}$.

• Using the real translation property.

$$M(z) \ = \ E(z) \ - \ z^{-1}E(z) \ - \ z^{-1}M(z)$$
 $M(z) \ = \ rac{z \ - \ 1}{z \ + \ 1}E(z)$

iscrete-time Systems E 233

©2002 M.C. Ramos UP EEE Department

Solving Difference Equations

Expanding into a power series.

M(z) = 1 -

 $2z^{-1} + 3z^{-2}$

 $-4z^{-3} +$

Solving Difference Equations

• Thus $\{m(k)\} =$ $\frac{2}{3}$

• Verifying using the sequential solution.

Assuming m(-1) = 0 and since e(k) =k even k odd

$$m(k) = e(k) - e(k - 1) - m(k - 1)$$

$$m(0) = e(0) - e(-1) - m(-1) = 1 - 0 - 0 = 0$$

 $m(1) = e(1) - e(0) - m(0) = 0 - 1 - 1 = -1$
 $m(0) = e(1) - e(0) - m(0) = 0 - 1 - 1 = -1$

m(3) = e(3)m(2)=e(2)e(2)e(1)- m(1)- m(2)

Discrete-time Systems EE 233

Power Series Method

• Example 9. Given E(z)

χ 2

 $\frac{3}{2}$

 $\frac{1}{+2}$, find e(k).

$$z^{2} - 3z + 2 | z$$

$$z - 3 + 2z^{-1}$$

$$3 - 2z^{-1}$$

$$3 - 9z^{-1} + 6z^{-2}$$

$$7z^{-1} - 6z^{-2}$$

$$15z^{-2} - 14z^{-3}$$

Discrete-time Systems EE 233 ©2002 M.C. Ramos UP EEE Department

Power Series Method

 \bullet Find the inverse z-transform by expressing E(z) as a power series in z.

$$E(z) = e_0 + e_1 z^{-1} + e_2 z^{-2} + \dots$$

• Power series can be found by performing the division of the fractional polynomial expression of E(z).

$$E(z) = rac{N(z)}{D(z)} \leftarrow ext{polynomial numerator}$$

• Coefficients of E(z) power series are the values of $\{e(k)\}$.

©2002 M.C. Ramos UP EEE Department

©2002 M.C. Ramos UP EEE Department

Power Series Method

• Thus, E(z) can be expressed as

$$E(z) = z^{-1} + 3z^{-2} + 7z^{-3} + 15z^{-4} + \dots$$

which results in

$$0 \qquad e(4) =$$

15

e(0)

$$e(1) = 1$$

$$e(2) = 3$$

 \parallel

$$e(k) = 2^k -$$

$$e(3) = 7$$

• Closed-form expression is e(k) =

using the power series method. In general, a closed-form expression can not be identified

Partial-fraction Expansion Method

- ullet Use partial-fraction expansion along with common z-transform pairs.
- Some z-transform pairs.

$$\delta(k-n) \Leftrightarrow z^{-n}$$
 $k^2 \Leftrightarrow \frac{z(z+1)}{(z-1)^2}$
 $1 \Leftrightarrow \frac{z}{z-1}$ $a^k \Leftrightarrow \frac{z}{z-a}$
 $k \Leftrightarrow \frac{z}{(z-1)^2}$ $ka^k \Leftrightarrow \frac{az}{(z-a)^2}$

Discrete-time Systems EE 233

> ©2002 M.C. Ramos UP EEE Department

Partial-fraction Expansion Method

• Example 10. Given $E(z) = \frac{z}{z^2 - 3z + 2}$, find e(k).

$$E(z) = \frac{z}{(z-1)(z-2)}$$

$$\frac{E(z)}{z} = \frac{1}{(z-1)(z-2)} = \frac{-1}{z-1} + \frac{1}{z-2}$$

 \bullet Taking the inverse z-transform gives

$$\mathcal{Z}^{-1}[E(z)] = \mathcal{Z}^{-1}\left[\frac{-z}{z-1}\right] + \mathcal{Z}^{-1}\left[\frac{z}{z-2}\right]$$

 $\Rightarrow e(k) = -1 + 2^{k}$

Discrete-time Systems EE 233

©2002 M.C. Ramos UP EEE Department

Partial-fraction Expansion Method

- ullet Notice that the factor z appears in the numerator of the transforms.
- \Rightarrow partial-fraction expansion is performed on E(z)/z.
- Additional z-transform pairs.

$$\sin ak \Leftrightarrow \frac{z \sin a}{z^2 - 2z \cos a + 1}$$
$$\cos ak \Leftrightarrow \frac{z(z - \cos a)}{z^2 - 2z \cos a + 1}$$

Discrete-time Systems EE 233

©2002 M.C. Ramos UP EEE Department

Partial-fraction Expansion Method

• Example 11. Given $E(z) = \frac{1}{z^2 - 3z + 2}$, find e(k).

$$\frac{E(z)}{z} = \frac{1}{z(z-1)(z-2)} = \frac{1}{2z} + \frac{-1}{z-1} + \frac{1}{z-2}$$

$$\Rightarrow E(z) = \frac{1}{2} + \frac{-z}{z-1} + \frac{1}{2 \cdot z - 2}$$

$$\Rightarrow e(k) = \frac{1}{2}\delta(k) - 1 + 2^{k-1}$$

Use the real translation property to verify using the result from the previous example.

Inversion Formula Method

• Cauchy's residue theorem (complex theory).

$$\oint_{\Gamma} f(z) dz = j2\pi \sum_{i=1}^{\infty} \operatorname{Res}(z_i)$$

where the z_i 's are poles of f(z).

The residue $\operatorname{Res}(z_i)$ of pole z_i of multiplicity m_i is

$$\operatorname{Res}(z_i) = \lim_{z \to z_i} \frac{1}{(m_i - 1)!} \frac{d^{m_i - 1}}{dz^{m_i - 1}} [(z - z_i)^{m_i} f(z)]$$

• There is a relationship between the value of the contour integral and the poles that reside within the contour.

233

©2002 M.C. Ramos UP EEE Department

Inversion Formula Method

• Example 12. Given $E(z) = \frac{z}{(z-1)(z-2)}$, find e(k).

$$E(z)z^{k-1}=rac{z}{(z-1)(z-2)}z^{k-1}=rac{z^k}{(z-1)(z-2)}$$

• $E(z)z^{k-1}$ has simple poles at $z = \{1, 2\}$. Thus,

$$e(k) = \left. \frac{z^k}{z-2} \right|_{z=1} + \left. \frac{z^k}{z-1} \right|_{z=2} = -1 + 2$$

©2002 M.C. Ramos UP EEE Department

Discrete-time Systems EE 233

Inversion Formula Method

• How does Cauchy's residue theorem help us? Recall e(k) can be expressed as

$$e(k) \ = \ {\cal Z}^{-1}[E(z)] \ = \ rac{1}{2\pi j} \oint_{\Gamma} E(z) z^{k-1} dz, \quad j \ = \ \sqrt{-1}$$

• Thus, using the residue theorem we get

$$e(k) = \sum_{egin{array}{c} ext{at poles of} \ E(z)z^{k-1} \ \end{array}} \left[ext{residues of } E(z)z^{k-1}
ight]$$

simple pole : $\operatorname{Res}(z = a) = (z - a)E(z)z^{k-1}\Big|_{z=a}$

E 233

©2002 M.C. Ramos UP EEE Department

Inversion Formula Method

• Example 13. Given $E(z) = \frac{1}{(z-1)(z-2)}$, find e(k).

For k = 0, the $E(z)z^{k-1}$ has a pole at z = 0. Thus,

(0) =
$$\sum_{z=0,1,2} \left[\text{residues of } \frac{1}{z(z-1)(z-2)} \right]$$

$$=\frac{1}{2}-1+\frac{1}{2}=0$$

or $k \geq 1$,

$$z^{k} = \left. rac{z^{k-1}}{z-2}
ight|_{z=1} + \left. rac{z^{k-1}}{z-1}
ight|_{z=2} = -1 + 2^{k-1}$$

Discrete-time System

Inversion Formula Method

• Example 14. Given $E(z) = \frac{z}{(z-1)^2}$, find e(k).

We only have one pole at z=1 with multiplicity 2. From the definition of a residue,

$$e(k) = \frac{1}{(2-1)!} \frac{d^{2-1}}{dz^{2-1}} \left[(z-1)^2 \cdot \frac{z}{(z-1)^2} \cdot z^{k-1} \right]$$

$$= \frac{d}{dz} z^k \Big|_{z=1} = k z^{k-1} \Big|_{z=1}$$

$$= k$$

time Systems

©2002 M.C. Ramos UP EEE Department

Discrete Convolution Method

• Which expands into

$$E(z) = e_1(0)e_2(0) + [e_1(0)e_2(1) + e_1(1)e_2(0)]z^{-1}$$

$$+ [e_1(0)e_2(2) + e_1(1)e_2(1) + e_1(2)e_2(0)]z^{-2}$$

$$+ \dots$$

 \bullet Thus, the sequence e(k) can be expressed as

$$e(k) = e_1(0)e_2(k) + e_1(1)e_2(k-1) + \dots + e_1(k-1)e_2(1) + e_1(k)e_2(0)$$
$$= \sum_{n=0}^{k} e_1(n)e_2(k-n) = \sum_{n=0}^{k} e_1(k-n)e_2(n)$$

Discrete-time Systems EE 233

Discrete Convolution Method

• Determine the inverse z-transform by expressing E(z) as a product of two simple functions.

$$E(z) = E_1(z)E_2(z)$$

ullet Presumably, it will easier to take the inverse z-transforms of $E_1(z)$ and $E_2(z)$.

Using the power series expansion of $E_1(z)$ and $E_2(z)$,

$$E(z) = \left[e_1(0) + e_1(1)z^{-1} + e_1(2)z^{-2} + \ldots\right] \left[e_2(0) + e_2(1)z^{-1} + e_2(2)z^{-2} + \ldots\right]$$

Discrete-time Systems EE 233

©2002 M.C. Ramos UP EEE Department

Discrete Convolution Method

Discrete convolution is usually denoted as

$$e(k) = \mathcal{Z}^{-1}[E_1(z)E_2(z)] = e_1(k) * e_2(k)$$

• Example 15. Given $E(z) = \frac{z}{(z-1)(z-2)}$, find e(k).

Decomposing
$$E(z)$$
 into $E(z) \,=\, E_1(z) E_2(z)$ gives

$$egin{aligned} E_1(z) &= rac{z}{z-1} &= 1+z^{-1}+z^{-2}+\ldots \ E_2(z) &= rac{1}{z-3} &= z^{-1}+2z^{-2}+2^2z^{-3}+\ldots \end{aligned}$$

Discrete-time Systems EE 233

Ŋ

©2002 M.C. Ramos UP EEE Department

Discrete Convolution Method

• Then, e(k) can be computed for every k = 0, 1, 2, ...For example, e(2) can be calculated as

$$e(2) = \sum_{n=0}^{2} e_1(n)e_2(2-n)$$

$$= e_1(0)e_2(2) + e_1(1)e_2(1) + e_1(2)e_2(0)$$

= 1\cdot 2 + 1\cdot 1 + 1\cdot 0 = 3

• Other values of e(k) can be computed similarly.

Discrete-time Systems
EE 233

©2002 M.C. Ramos UP EEE Department

Summary

- Overview of discrete-time systems.

 How are they different from continuous-time systems?
- \bullet The z-transform and its properties.
- What are difference equations and how to solve them.
- ullet The inverse z-transform and techniques for determining the inverse z-transform.

screte-time Systems