Today’s EE 233 Lecture

Introduction

e Overview of what you should know?

e Digital control system.

e The control problem.

e Some examples on modelling.

e Summary.

Introduction ©2002 M.C. Ramos
EE 233 UP EEE Department

Introduction

e Analysis and design of closed-loop physical systems.

Should have learned something about this in a previous
control systems course.

e Digital control is used to modify system behavior such
that the desired response is cbtained.

Digital computers or controllers are inserted in the
system to modify the dynamics.
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Introduction

e Advantages of digital control (vs. analog control).
—easier to modify controller dynamics.
—no controller degradation or drift due to aging.
—can implement exotic control schemes?

e Disadvantages of digital control (vs. analog control).
—more expensive?
—continuous systems are easier to grasp?
—mathematics is a bit more involved?
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e Closed-loop system is a system wherein the inputs
(forcing functions) are determined somewhat by the
outputs (response) of the system.

Difference Plant
+ signal input
Desired
esire 1 Controller ——®] Plant Response
response

Sensor

e Input is a function of (although not entirely) the output.
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Introduction

Example of a Closed-loop System

e Simple closed-loop system.

—plant.

—control actuator.

— sensor(s).

— controller (compensator or filter).

® One of the tasks of a control system designer is the
design of the controller.

The designer may also be tasked to select what sensors,
actuators and controller is to be used.
The plant is usually known (just model it).
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Example of a Closed-loop System

e Pilot landing an aircraft.
The aircraft is the plant.

e Inputs are position of aircraft control surfaces (e.g.
rudder, elevators, ailerons) and engine thrust.

e The pilot functions as the sensor
(perceptions of environment and instruments).

The controller is the pilot’s action based on the
perceived error in the flight of the aircraft.
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Digital Control

e For the aircraft system, the pilot is a major part of the
control system (sensor, controller and actuator).

e The design of the aircraft contrel system corresponds to
the training of the pilot based on a specific aircraft.

Different aircrafts have different dynamics and inputs.

Flying a fighter jet is not the same as flying a
commercial passenger airliner.
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e Consider the following control system.

Difference Plant
+ signal input
Desired
esire 1 Controller ——®] Plant Response
response

Sensor

e Appropriate sensors for measuring system response.

Digital computer acting as the controller to achieve the
desired response.
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Digital Control

e Digital controller can be microprocessors,
microcontrollers, workstations and other digital devices.

e The plant exhibits some dynamics. The dynamics will
be ’programmed’ into the digital controller.

e Plant dynamics are oftentimes fixed. However, we can
choose the design (in some sense, programming) of the
controller.
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Digital Control

Digital Control

e Linear system - system where the principles of
superposition and homogeneity apply.

All physical systems are by nature nonlinear. However,
most systems can be designed to operate within a linear
region.

e Time-invariant system - system parameters are constant
with respect to time.

What systems are time-varying? Block of wood? Space
vehicle?
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® We need to design the controller such that we get the
desired (or satisfactory) closed-loop system response.

e In the aircraft example, let us say we want to design an
automatic landing system.

Satisfactory response can be

—a good landing approach,
—a comfortable ride and
—no undue mechanical stress on the aircraft.
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Digital Control

e Continuous-time system - system where signals change
continuously.

e Discrete-time system - signals change values only at
discrete time instants.

e We will be locking at mostly linear time-invariant
dicrete-time systems.

We will achieve the control of such systems using digital

control techniques.
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Digital Control Basics

aircraft
e Example. Automatic
aircraft landing system.

e Control pitch and bank of
aircraft via transmitter.

Pitch and bank commands
result in a change in
aircraft position.

bank lateral

pitch vertical
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Digital Control Basics

Digital Control Basics

e Assume that the control is independent (decoupled).

—bank command input - affects only the lateral position.

—pitch command input - affects only the altitude.

e Look at the lateral position control.

e The lateral aircraft position x(t) is the perpendicular

distance of the aircraft from the centerline of the runway.
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e The system has three basic parts.

—aircraft - receives commands and takes action.
—radar unit - measures approximate aircraft position.
—controller - determines appropriate aircraft commands.

e The controller is a digital computer.

—lateral control - lateral position of the aircraft.
—vertical control - altitude of the aircraft.
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Digital Control Basics

e The control system tries to force x(t) to zero.

., g g

(A a(t)

runway

centerline

e The radar unit measures x(t) every 50 ms.
We have the sampled value z(kT) of z(t) with
T = 50msand &k = 0,1,2,....
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Digital Control Basics Digital Control Basics

e The controller processes e Consequently, the bank
the sampled values and command ¢(t) remains
generates (also transmits) wt)— | sjrcrare | =@ constant at the last value “®— JMMM,
discrete-time bank o) m_mm.w__ | Gsim a new value is ¢(t) = system
commands ¢(kT). , received.
radar
radar data
data hold
hold
e The commands are » lateral e The aircraft responds to WMMH -

3 1 digital Bl : desired
received by the aircraft it awwmmw the bank ooEEmsm. &5& controller [=—— 5L
and clamped by a data P changes lateral position.
hold. .

The bank command is updated every T = 50 ms.
T is termed as the sampling period.
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Digital Control Basics Digital Control Basics

e Two additional inputs to the system. e How to go about designing the controller (i.e. solving
—wind input w(t) - disturbance that affects aircraft the control problem)?
position.

We must know something about the system.

—radar noise n(t) - sensor noise. Mathematical relationships between bank command

Noise and disturbance are unwanted inputs but always ¢(t), wind input w(t) and the lateral position x(t) would
present in control systems. be helpful.

e The design problem is to maintain x(t) small in the e Mathematical relationships are referred to as a
presence of noise and disturbances. Additionally, the mathematical model of the plant.

system response should be acceptable.
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Digital Control Basics

e For an F4 aircraft, the lateral system model is a
ninth-order ordinary nonlinear differential equation. For
small ¢(t), a linear model would still be a ninth-order
ODE.

e The system design will be realized using a digital
controller.

The controller should account for the ninth-order ODE
model, the wind disturbance, radar noise, the sampling
period and the desired system response.
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The Control Problem

The Control Problem

e To solve the control problem will inveolve

—choosing sensors to measure feedback signals.
—choosing actuators to drive the plant.

—developing plant (and also sensor and actuator)
models.

—designing the controller based on models and the
performance criteria.

—evaluating the design (analytically, simulation and
physical tests).

—iterating until satisfied with system response.
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e A physical system is to be accurately controlled by
means of a closed-loop feedback system.

The output (system response) is adjusted based on the
error signal.

The error is the difference between the actual and
desired system responses.

e The controller processes the error signal based on
several general criteria such as

—steady-state error —disturbance rejection
—transient response —sensitivity to plant changes
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The Control Problem

e Iteration. Actual physical tests may not yield
satisfactory performance. Go back and redesign to
improve the performance.

e Intuition. While experimenting with a physical system,
designers usually develop an intuition on how to achieve
the requirements.

e Experience. Depending on the design engineer’s
experience, some steps in the design may be skipped.
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The Control Problem

The Control Problem

e Approach. Mathematical analysis and design.

(" )

problem
formulation

mathematical
model of the
system

physical conceptual
system aspects

4/

solution
translation

mathematical
solution of
the preblem

- J
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Mathematical Models

e Given a physical system and the control problem,

—pose the problem as a mathematical problem.
—come up with mathematical solution.
—translate the mathematical solution into reality.

e We need mathematical models to get going.

Then, we apply cur vast mathematical experience to
come up with an equation describing the solution.

Finally, we need to be build it.
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Mathematical Models

e Example. Satellite model.

Assume that the satellite
is spherical and is
controlled by thrust
engines. —

thrust
engines

e Independent thrust control along the roll, pitch and yaw
axes.
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e Thrust engines develop torque to rotate the satellite on
one axis.

Satellite is rigid and space is a frictionless environment.

e Differential equation model.

d?6(t)
&ﬁﬁ = 7(%)
where J, is the satellite’s moment of inertia about the

roll axis and 6 is the roll angle.
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Mathematical Models

e Transfer function model.
Let Z[r(t)] = T(s) and Z[6(t)] = O(s).
Jrs2@(s) = T(s)
O(s) 1

Grls) = T(s)  Jps?

e State-space model. )
Let z1(t) = 6(t) and z2(t) = &1(t) = 6(¢t).

28] = [so][ze] + [§]-o

Jr
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Mathematical Models

Mathematical Models

e Thus, the satellite model can be specified either by a
second-order ODE, a transfer function or in state-space
form.

What to use? Depends on the stage of the design
process.
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Mathematical Models

e Example. Servomotor system model.
—uses an electric motor for position control.

—applications in antenna pointing system and
manipulator arm control.

e Armature controlled DC motor with constant field.

W w\w iy = constant
B
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e Assuming that the armature inductance L, is small,
we have four electromechanical equations

ea(t) = Raia(t) + ep(t) (KVL)

do(t
ep(t) = kp &Mv (back-EMF)
7(t) = kiia(t) (motor torque)
d26(t do(t
T(t) = k% + m% (sum torques)

e Solve the equations for the output 6(t) in terms of the
input eq(t).
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Mathematical Models

e From the KVL and back-EMF equations, we get

iat) = ea(t) — ep(t) _ ea(t)  kpdb(t)
g R, " Ra R, dt

e Using the torque equations,

. k; ks dO(t
() = kiit) = Moy — MDD
a a
d?o(t do(t
_ P00 | o)
dt dt
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Mathematical Models

e State-space representation. )
Let 1(t) = 6(t) and x2(t) = z1(t) = 6(¢).

Y & |mmn.~waﬁ.5§3 + .\Mamp:v

e Note : if the armature inductance Ly is not negligible,
the system model will be third-order.
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Mathematical Models

e Second-order differential equation model.

d?6(t) 4 BR, + kikpdO(t)  k;

J = —eq(t
dt R, dt a a(t)
e Laplace transform and transfer function.
k;
_ B(s) Rq
G(s) = =
Eq(s) — Js2 4 BRat kikyg
i
. TR
o BR, + kik
s Am + =Yg v av
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Mathematical Models

e Servomechanism application.
Antenna pointing system (yaw angle control).

antenna

difference power

desired amplifier amplifier

angle

gears

D/A

data hold encoder
cenverter
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Mathematical Models

Mathematical Models

servomotor

amplifier system
. + error
e Block diagram of X o] Km -
+
the antenna < s+ a

pointing system.

SEeNsor |og

. . output
e Error is a low power signal.

An amplifier is used to drive the
servomotor. 4v

The amplifier introduces a nonlinearity % input
to the control system.

24V T
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Mathematical Models

e Manipulator arm servomechanisms.
—control the position (angles) of the joints of a
manipulator.
—manipulator dynamics are usually nonlinear
differential equations.

e Simple approach.

Consider the arm as a simple mechanism and ignore the
effect of the motion of other arms.
= simple but usually yields unacceptable response.
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Mathematical Models

e The arm (link) is connected to the motor through gears
at coupled at the joint.

power
amplifier

Om

@ Second-order model for the servomotor is assumed.

If the gears turn ration = 6/6, < 1, then the
inertia of the arm as seen by the motor will be small
(and friction may be neglible).
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e Another modeling example.
Temperature control system.

input flow at
temperature 7;

Liquid is flowing out at L«f ambient

. . tempera-
a certain rate while o ture of air

. liquid at .
._Umusm H.OHV#N.OOQ. .—UV\ temperature T 18 Ta
. . . heat
liquid with earer
output flow at

ﬂmgﬁvmﬂ.mﬁgﬂm Ti- nJO temperature T

mixer

e The liquid is heated by an electric heater and agitated
by a mixer such that the liquid temperature is uniform
inside the tank.
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Mathematical Models

e Define

A

ge(t) = heat increase supplied by the heater.
A . . N

g;(t) = heat increase from entering liquid.
A

q;(t) = heat absorbed by the liquid.
A

go(t) = heat decrease from exiting liquid.
A

gs(t) = heat loss through tank surface.

e Conservation of energy.
%(t) + ge(t) = a(t) + ao(t) + gs(t)
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Mathematical Models

e The heat loss through the tank surface in terms of the
thermal resistance R of the tank surface is
T(t) — 7ot
ao(ty = " a0

e Combining the above equations, we get the differential
equation model of the system.

Mathematical Models

e The heat absorbed by the liquid is related toc the
thermal capacity C and the temperature change by

dr(t)

t) = C
q;(t) 7t

e Let v(t) be the liquid flow rate in (and out) of the tank.
If H is the specific heat of the liquid, then

9;(t) = v(t)H7i(t) and go(t) = v(t)HT(1)
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Mathematical Models

dr(t () — T.(t
ge(t) +v(t)Hri(t) = C (t) +o(t)HT(t) + (?) a(t)
dt R
ot

e Assuming that the flow rate v(t) is at a constant value
V', we get a time-invariant first-order ODE.

dr(t) T(t) — 7Ta(t)

ge(t) + VH7i(t) = C A + VHT(t) + R

e In view of a control system,
—qge(t) is the input,
—7;(t) and 74(t) are disturbances, and
—7(t) as the output.
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Mathematical Models

e The transfer function and corresponding block diagram
are
Qc(s) + VHT;(s) + (1/R)Ta(s)

T() = Cs + VH + (1/R)

Qc(s)— | 1

1

Ry vH | Ca + VH + (/R)

——® T(s)

T,(s)—

x|~
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Summary

Mathematical Models

e We have reviewed the concept of a closed-loop system.

e Discussed three physical systems and introduce the
concept of digital control.

e Developed some models for physical systems.

e Review of math basics and different model formulations.
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e We can consider the system toc have multiple inputs. If
the disturbance inputs are ignored, then the system is a
simple first-order system.

This may be true if we have almost no input flow and
the tank is well insulated.

e Although the design would be simple, it may not
perform well is reality.
Disturbance rejection should also be accounted for when
designing a system.
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