
EE 233 Homework 5.

4-1. Pole mapping from s-domain to the z-domain.

a. Show that a pole of E(s) in the left half-plane transforms into a pole of E(z) inside
the unit circle.

Solution:

From the residue theorem, we have

E(z) =
∑

at poles
of E(λ)

[

residues of E(λ)
1

1 − z−1ǫλT

]

Thus, we have the following term in E(z) due to the pole at λ

residue of E(λ)

1 − z−1ǫλT

where residue of E(λ) evaluates to a constant. If the pole of E(s) is in the LHP, then
Re(λ) < 0 and

0 < |ǫλT | < 1

which places the pole inside the unit circle.

b. Show that a pole of E(s) on the imaginary axis transforms into a pole of E(z) on the
unit circle.

Solution:

Similar to the argument above, if the pole of E(s) is on the imaginary axis, Re(λ) = 0
and

|ǫλT | = 1

which places the pole on the unit circle.

c. Show that a pole of E(s) in the right half-plane transforms into a pole of E(z) outside
the unit circle.

Solution:

Similar to the argument above, if the pole of E(s) is n the RHP, Re(λ) > 0 and

|ǫλT | > 1

which places the pole outside the unit circle.



4.2. Let T = 0.05 s and

E(s) =
s + 2

(s − 1)(s − 2)

a. Without calculating E(z), find its poles.

Solution:

ǫ
T = ǫ

0.05 = 1.0513

ǫ
2T = ǫ

0.1 = 1.1052

b. Give the rule that you used in part a.

Solution:

From the residue theorem, we have the following term(s) in E(z)

residue of E(λ)

1 − z−1ǫλT

Thus, ǫλT determines a pole location of E(z).

c. Verify the results of part a. by calculating E(z).

Solution:

Using the residue theorem,

E(z) =
λ + 2

λ − 2
·

1

1 − z−1ǫλT

∣

∣

∣

∣

∣

λ = 1

+
λ + 2

λ − 1
·

1

1 − z−1ǫλT

∣

∣

∣

∣

∣

λ = 2

=
−3z

z − ǫT
+

4z

z − ǫ2T

=
4z(z − ǫT ) − 3z(z − ǫ2T )

(z − ǫT )(z − ǫ2T )

which shows that the poles are indeed at z = ǫT and ǫ2T as presented in a.

d. Compare the zero of E(z) with that of E(s).

Solution:

E(s) has a single zeroes while E(z) has two zeroes.

e. The poles of E(z) are determined by those of E(s). Does an equivalent rule exist for
zeros?

Solution:

No simple, direct relationship exist between the zeroes of E(s) and E(z).



4.5. Given the following system

E(s) =
1

s C(s)

T = 1s

1 − ǫ−Ts

s

5s

s + 0.1

M(s)

zero-order hold plant

a. Find the system response at the sampling instants to a unit step input for the above
system. Plot c(nT ) versus time.

Solution:

G(z) = Z

[

1 − ǫ−Ts

s
·

5s

s + 0.1

]

= Z
[

5s

s + 0.1

]

(1 − z
−1)

=
5z

z − ǫ−0.1T
·
z − 1

z

For a unit step input,

E(z) =
z

z − 1

Then,

C(z) = G(z)E(z) =
5z

z − ǫ−0.1T

Taking the inverse z-transform,

c(nT ) = 5ǫ−0.1nT

b. Verify your results of a. by determining the input to the plant, m(t) and then calcu-
lating c(t) by continuous-time techniques.

Solution:

Input appearing at the plant is still a unit step. Thus,

C(s) =
1

s
·

5s

s + 0.1

c(t) = 5ǫ−0.1t



c. Find the steady-state gain for a constant input (dc gain), from both the pulse transfer
function and from the plant transfer function.

Solution:

css = lim
z→1

(z − 1)C(z) = lim
z→1

(z − 1)
5z

z − ǫ−0.1T
= 0

lim
s→0

Gp(s) = lim
s→0

5s

s + 0.1
= 0

d. Is the gain in part c. obvious from the results of parts a. and b. Why?

Solution:

Yes. Exponentially decaying functions go to zero.


