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Advanced Root Locus

•Effect of adding poles and zeros.

•Root contour.

•Time delay.

•Root sensitivity.

Advanced Root Locus

EE 231

c©2003 M.C. Ramos

UP EEE Institute

EE 231

Effect of Adding Poles and Zeros

•Adding a pole to G(s).

kG̃(s) = kG(s) ·
1

s + a

real

imag

p1p2−a

s

s-plane Angle criterion.

in order for s to be part
of the RL, the total angle
must be (2l + 1)π.
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Effect of Adding Poles and Zeros

•Remarks.

– for a given point on the old locus, the new pole adds
more negative angle.

– since the total angle must not change, the RL point
moves to the right to compensate for the additional
negative angle.

•Asymptotes.

θ =
(2l + 1)π

m − n
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Effect of Adding Poles and Zeros

•Thus, for a fixed m, smallest θ decreases as n increases.

realreal

imagimag

σ1σ1

|m − n| = 2

θ = ±
π

2
θ = ±

π

3
, π

|m − n| = 3
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Effect of Adding Poles and Zeros

•Adding a zero to G(s).

kG̃(s) = kG(s) · (s + a)

•Angle from zero reduces
the negative angle from
the poles.

⇒ RL point must move to
the left to compensate.

real

imag

p1p2−a

s
s-plane
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Effect of Adding Poles and Zeros

•Asymptotes.
for fixed n and with m < n.

θ =
(2l + 1)π

m − n

⇒ smaller |m − n| means larger steps between
asymptote angles.

real real

imag imag

σ1 σ1

|m − n| = 2

θ = ±
π

2
θ = ±

π

3
, π

|m − n| = 3
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Effect of Adding Poles and Zeros

•Octave exercise. Effect of adding a pole.

>> G1 = zpk([], [0 -1], 1); % original system

>> rlocus(G1);

>> G2 = zpk([], [0 -1 -10], 1); % add a pole

>> rlocus(G2);
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Effect of Adding Poles and Zeros

•Octave exercise. Effect of adding a zero.

>> G1 = zpk([], [0 -1], 1); % original system

>> rlocus(G1);

>> G2 = zpk([-10], [0 -1], 1); % add a zero

>> rlocus(G2);
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Root Contour

•Applies when more than one parameter changes in the
characteristic equation.

•Example. Consider the characteristic equation

s3 + 3s2 + 2s + k2s + k1 = 0

•Determine the root locus for parameter k1 with k2 = 0.

Then, determine the root locus for parameter k2 for
different values of k1.
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Root Contour

•Characteristic equation for parameter k1 (k2 = 0).

1 +
k1

s3 + 3s2 + 2s
= 0

•Characteristic equation for parameter k2 (k1 6= 0).

1 +
k2s

s3 + 3s2 + 2s + k1
= 0

•Poles of the second characteristic equation are the
roots of the first characteristic equation.
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Root Contour

•Two-parameter root locus.

−5 −4 −3 −2 −1 0 1 2
−15

−10

−5

0

5

10

15

real axis

im
a
g
in
a
ry

a
x
is

k2 = 0 k2 = 0

k1 = 10

k1 = 10

k1 = 25

k1 = 25

Advanced Root Locus

EE 231

c©2003 M.C. Ramos

UP EEE Institute

EE 231

Time Delay

• System with a time delay.

u(t) DELAY y(t) = u(t − T )

Y (s) = e−TsU(s)

•Modifications to the root locus.

e−TsG(s) =
−1

k
, s = σ + jω
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Time Delay

•Magnitude criterion. since |e−T (σ + jω)| = e−Tσ,

e−Tσ|G(s)| =
1

|k|

•Angle criterion. since ∠e−T (σ + jω) = ωT

∠G(s) = (2l + 1)π + ωT

•Magnitude and angle criteria depend of the location
s = σ + jω in the s-plane.
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Time Delay

• Start : k = 0.
Poles of G(s) and σ = − ∞.

•End : k = ∞.
Zeros of G(s) and σ = ∞.

•Number of branches.
Infinite roots ⇒ infinite branches.
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Time Delay

•Points on the real axis.
same rule as before applies.

•Asymptotes.

– infinite, parallel to the real axis.

– intersection with the imaginary axis is determined by
the angle criterion.

for large σ,
∠G(s) = mθ − nθ

thus,
mθ − nθ = (2l + 1)π + ωT
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Polynomial Approximations to Time Delay

•Exponential approximation.

e−Ts ≈
1

[

1 + Ts
n

]n =

[

n

T

]n

[

n

T
+ s

]n

• Illustration.

–n = 1 : e−Ts ≈
1

1 + Ts

–n = 2 : e−Ts ≈
1

(1 + Ts
2 )2

=
4

4 + 4Ts + T 2s2
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Polynomial Approximations to Time Delay

•How good is the time delay approximation?

>> step(1, [1 1]) % n = 1, time delay T = 1

>> step(4, [1 4 4]) % n = 2, time delay T = 1
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Polynomial Approximations to Time Delay

•Polynomial approximation shows that poles are
introduced by the time delay approximations.

⇒ root locus is pushed to the right.

•Other time delay approximations are available.
Take a look at the Matlab pade command.

•Time delay usually leads to increased likelihood of
instability.
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Polynomial Approximations to Time Delay

•Recall the first-order system.

r(t) y(t)G(s)k
+

−
G(s) =

a

s + a
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From the root locus,
we can see that the system
is stable for all values of
gain k > 0.
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Polynomial Approximations to Time Delay

•What happens if we include a time delay?

G̃(s) = e−TsG(s) ≈

[

n

T

]n

[

n

T
+ s

]n ·
a

s + a

•Third-order delay approximation with T = 1.

G̃(s) =

[

3

1

]3

[

3

1
+ s

]3
·

a

s + a
=

27

(3 + s)3
·

a

s + a
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Polynomial Approximations to Time Delay

•Plot the root locus for a = 1.

>> G = zpk([], [-1 -3 -3 -3], 27);

>> rlocus(G);

−4 −3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3

real axis

im
a
g
in
a
ry

a
x
is

−a−n
T

Asymptotes at

(2l + 1)π

4
= ±

π

4
, ±

3π

4

We can see that the
system will not be stable
for all values of gain
k > 0.
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Root Sensitivity

• Sensitivity gives a measure of the effect of parameter
variations on system performance.

High sensitivity ⇒ system not robust.

•Define the root sensitivity.

Ss
k =

∂s

∂(ln k)
=

∂s

∂k/k

Approximation of root sensitivity.

Ss
k ≈

∆s

∆k/k

Advanced Root Locus

EE 231

c©2003 M.C. Ramos

UP EEE Institute

EE 231

Root Sensitivity

•Example. Consider the following system.

r(t) y(t)G(s)k
+

−
G(s) =

1

100s(s + 1)

Let us say the design
requires our roots to be at
s1 = − 0.5 + j0.5 and
s2 = − 0.5 − j0.5.

From the root locus, we
get our nominal gain to be
k0 = 50. −1.5 −1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

real axis

im
a
g
in
a
ry

a
x
is

k = 50

k = 50

Advanced Root Locus

EE 231

c©2003 M.C. Ramos

UP EEE Institute

EE 231

Root Sensitivity

• Implement the gain k with a non-inverting amplifier.

vin
vout

R1 R2

vout

vin
= 1 +

R2

R1

≈
R2

R1
for large k.

•Typical resistor tolerance : ±10%.

For nominal gain k0 = 50 and based on the resistor
tolerance, the gain k may vary about ±20% of the
nominal value.
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Root Sensitivity

•Then looking at root locus at gain k,

k = k0 ± ∆k

where ∆k = 0.2k0 = 10.
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k = k0 − ∆k = 40
⇒ s1 + ∆s1 = −0.5 + j0.59
⇒ ∆s1 = + j0.09

k = k0 + ∆k = 60
⇒ s1 + ∆s1 = −0.5 + j0.39
⇒ ∆s1 = − j0.11
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Root Sensitivity

•Thus the root sensitivity for s1.

S
s1
+∆k =

∆s1

∆k/k
=

+j0.09

+0.2
= j0.45 = 0.45∠ + 90o

S
s1
−∆k =

∆s1

∆k/k
=

−j0.11

+0.2
= − j0.55 = 0.55∠ − 90o

•For infinitesimally small values of ∆k, the sensitivity is
equal to the increments in k.

The angle of the sensitivity indicates the direction of the
movement of the roots with the parameter variation.
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Summary

•What happens to the root locus if we add a pole or a
zero to the original transfer function.

•Root contour. Essentially the root locus with more than
one parameter.

•Time delay. What are the consequences to our analysis.

•Root sensitivity. What a change in parameter would do
to the roots of a system.
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