- Continue investigating performance specifications.
- Time domain exercises for second-order systems.
- Characteristic equation.
- Dominant poles and design issues.

Performance Specifications

©2002 M.C. Ramos UP EEE Institute

Time Domain Exercises

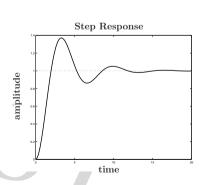
• Vary the damping factor ζ . Step response of G(s).

ans =

$$-0.3000 + 0.9539i$$

-0.3000 - 0.9539i

>> step(1, [1 0.6 1])



• Consider

$$G(s) = \frac{1}{s^2 + 0.6s + 1}$$

- Q : What is ω_n , ζ , ω_d and σ ? How do these parameters affect the response?
- Octave and roots of a polynomial. Example. Determine the roots of $s^2 + 0.6s + 1$.

Performance Specifications

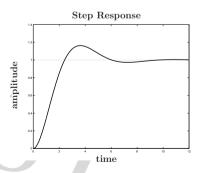
©2002 M.C. Ramos UP EEE Institute

Time Domain Exercises

• Increase the damping.

ans =

>> step(1, [1 1 1])

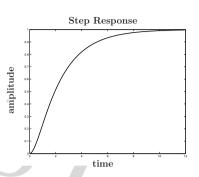


• Overdamped.

ans =

-2.0000 -0.5000

>> step(1, [1 2.5 1])



Performance Specifications EE 231 ©2002 M.C. Ramos UP EEE Institute

Time Domain Exercises

• Increasing the natural frequency ω_n .

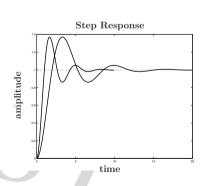
$$>> wn = 1; z = 0.3;$$

>> hold

Current plot held

>> wn = 2;

>> step(wn^2, [1 2*z*wn wn^2])

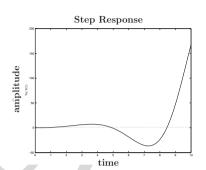


• Negatively damped.

ans =

0.5000 + 0.8660i 0.5000 - 0.8660i

>> step(1, [1 -1 1], 0:0.1:10)



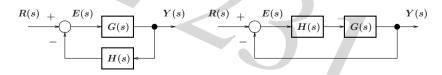
Performance Specifications EE 231 ©2002 M.C. Ramos UP EEE Institute

Characteristic Equation

• Error equation.

$$E(s) = \frac{1}{1 + H(s)G(s)}R(s)$$

• We have the same error equation for these two systems.



• Error equation and sensitivity function : E = SR

Characteristic Equation

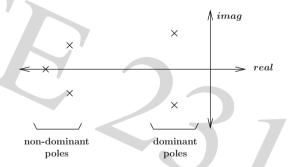
- Poles of the transfer function from R(s) to E(s). \Rightarrow roots or zeros of 1 + H(s)G(s).
- Characteristic equation : 1 + H(s)G(s) = 0.
- Example.

$$G(s) = \frac{1}{s^2 + 0.6s + 1}, \qquad H(s) = 1$$

Performance Specifications EE 231 ©2002 M.C. Ramos UP EEE Institute

Dominant Poles

• Location of poles on the s-plane.



- -dominant poles : decay slowly.
- non-dominant poles : decay quickly.

Characteristic Equation

• Error equation and characteristic equation.

$$rac{E(s)}{R(s)} = rac{s^2 + 0.6s + 1}{s^2 + 0.6s + 2}$$
 $1 + H(s)G(s) = 0 \implies s^2 + 0.6s + 2 = 0$

roots without feedback : $s = -0.3 \pm j0.9539$ roots with feedback : $s = -0.3 \pm j1.3820$

- Therefore, feedback
 - modifies system behavior.
 - -moves the location of the poles.

Performance Specifications

©2002 M.C. Ramos UP EEE Institute

Dominant Poles

- In some cases, we need to worry only about dominant poles and ignore non-dominant poles.
- Example. Compare the response of

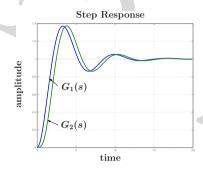
$$G_1(s) = \frac{1}{s^2 + 0.6s + 1}$$

and

$$G_2(s) = G_1(s) \frac{9}{s^2 + 4.2s + 9}$$

Dominant Poles

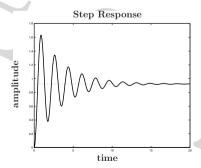
• Step responses.



Performance Specifications EE 231 ©2002 M.C. Ramos UP EEE Institute

Dominant Poles

- ullet Step response of the paper design with the plant $\tilde{G}(s)$.
 - >> [nc1, dc1] = cloop(12*n1, d1, -1);
 - >> step(nc1, dc1)



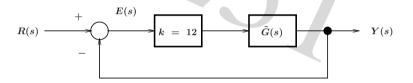
 \Rightarrow We have a stable system.

Dominant Poles

• What happens if you ignore 'insignificant poles?'

Suppose the actual plant model is $G(s) = G_2(s)$. However, in designing the control, non-dominant poles where ignored, i.e., we use $\tilde{G}(s) = G_1(s)$.

• Design the feedback system.

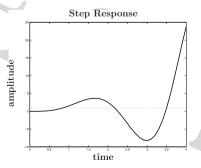


Performance Specifications

©2002 M.C. Ramos UP EEE Institute

Dominant Poles

- Check using the actual plant model, G(s).
 - >> [nc2, dc2] = cloop(12*n2, d2, -1);
 - >> step(nc2, dc2, [0:0.1:4])



 \Rightarrow The system is unstable.

Dominant Poles

- The step responses of low-order systems and high-order systems may be similar.
- Good thing. This can simplify the determination of the step response of a high-order system.

Inspect the T_r , T_d , natural frequency, etc.

There is 'little' difference between the step responses of the second-order system $G_1(s)$ and the fourth-order system $G_2(s)$.

Performance Specifications

©2002 M.C. Ramos UP EEE Institute

Summary

- Varying ζ and ω_n varies the response of a second-order system.
- Characteristic equation, and how it describes a system.
- Dominant poles. Making the right choice.

Performance Specifications ©2002 M.C. Ramos
EE 231 UP EEE Institute

Dominant Poles

• Not so good thing. This can lead to incorrectly identifying the system order, and the system model.

Inspect the T_r , T_d , natural frequency, etc.

In designing a control system for $G_2(s)$, one may incorrectly model the system as $G_1(s)$, and thus lead to a poorly designed controller.

• An accurate model is important in control systems design.

Performance Specifications

EE 231

©2002 M.C. Ramos

UP EEE Institute