Today’s EE 231 Lecture

e Basic math tools.

e Linear time-invariant systems.

e State-space representation.

e Linearization.
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Differential Equations

Basic Math Tools

e An n-th order differential equation (DE) is

d"y(t) dy(t)
i + ... 4+ a9 It

= homogenous if f(t) =0

an+1 + ay(t) = f(¥)

e Input-output relationship.

Input Output

=T
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e Dynamic systems are usually represented or modeled by
differential equations.

—linear ODE
—mnonlinear ODE
— partial differential equations (PDE)

e Ordinary differential equations (how to solve them).

—classical approach
— Laplace transforms
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Differential Equations

e Nonlinear differential equations.
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Differential Equations

Linear Time-invariant Systems

e Example. Second-order differential equation.

T o@® + 3%a(t) + 200) = 5u(®)
— —x T = bu
dt? dt
Initial conditions.
x(0) = —1
dx(t
dt =0
Solution.
z(t) = — — et + Ze 2, ¢t > 0
Py T R

Linear Time-invariant Systems

e Linear systems

fi(t) —— ] System L yi(Y)

e Linear system satisfies
—superposition
—homogeneity
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State-space Representation

i = 1,2
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e Linear systems
I: Superposition II: Homogeneity
f@&) = f1t) + f2(t)  f(t) = afi(t), a e R
U U

y(t) = y1(t) + ya2(t) y(t) = ay;(t)

e Time-invariant linear systems (LTT)

III. Time-shift independent
ft) = fit—7), TER
U
y(t) = yi(t—7)
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e Consider a first-order ODE.

a2y + a1y = f
i
_ 1 1
y = —aiy + —f
as as

e We can now simulate the system by

System S
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State-space Representation

State-space Representation

e Output y(tg) is a function of f(tg), y(to)
y(to + At) — y(to)

y(to) =
(to) s
U
y(to + At) = y(to) + y(to)At
Yy
y(to + At)
Ay
y(to)

: : t where At is small

to to + At
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State-space Representation

e Now consider a second-order ODE.

azy + a2y + a1y = f
i
A -1 . 1
g = —(a2y + a1y) + —f
as as

® Define a vector

=i -

9y | < function of x
1y | < function of x and f
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State-space Representation

e Then ...
Y 0
r — —1 —|_ 1
T .
—(a29 + a1y) —f
as as
N - 7 = NP =
depends on x depends on f
F— I
Y System I
oy ¥ fo—
: A . ! <:> System @

Basic Math Tools (©2002 M.C. Ramos
EE 231 UP EEE Institute

e Example. Simple pendulum.

/

B, friction

- assume massless rod
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e Dynamic equation.
ML?§ + BO + MgLsind = T
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State-space Representation

e State equation.

=l -

. 1 .
0 = —ML2(BO + MgLsin6) +

ML2T

. el 6 o,
v= e _MILZ(BB + MgLsin®) ﬁ

State-space representation is important in control design
and is useful in simulation of system behavior.
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Linear Approximations

eBut y = max + b may be linear about an operating
point.

e Operating point, set point : xg, ygo

e For small changes Ax and Ay
r = x9g + Azandy = yg + Ay
y = mx + b
= Yy + Ay = mxg + mAx + b
= Ay = mAux (satisfies necessary conditions)
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Linear Approximations

e Necessary conditions for linear systems.
—principle of superposition
—property of homogeneity

e Examples.
Ly = a2
not linear (does not satisfy superposition)
-y = mx + b
not linear (does not satisfy homogeneity)
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Linear Approximations

e Mechanical and electrical elements : linear over large
range of variables.

e Thermal and fluid elements : highly nonlinear.

e Assume a general model : y(t) = g[z(t)]
—x(t) : input variable
—y(t) : response variable
—g(+) : nonlinear function relating y(¢t) and = (t)
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Linear Approximations

Linear Approximations

e Assume g(-) is continuous within some range of interest.

e Taylor series expansion.

y B dg (x — z0)
y = g(z) = g(zo) + P = T
d? x — x0)2
_92 ( (Ui
dx 2!

r=xq

e Example (at z9 = 0). e = 1 + = + %mz +
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Linear Approximations

e The slope at the operating point,
dg
dx r=xq

may be used to approximate the curve over a small
range of (x — xo).

e Approximation for y(t) is then

dg
y=9(m0)+d— (x — o) = yo + m(z — xq)
Llr=x

where m is the slope at the operating point.
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Linear Approximations

e Rewriting as a linear equation.

(y — yo) = m(z — zo)
Ay = mAx

e Example. Nonlinear spring.

equjlibrium point

zo (operating point)
M €T
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e Equilibrium point : spring force = gravitational force
Jo = Mg

2

= xg = /Mg

e Nonlinear spring : f = «

e Linear model for small perturbations about x( is

Af = mAx
df
where m = — = 2xg
dz|,,
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Linear Approximations

Linear Approximations

e Example. Pendulum oscillator.

e Torque on pendulum mass is T' = MgLsin6.

Relationship between T and 6 is nonlinear.
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Laplace Transform

e Equlibrium point : 9 = 0° = Ty = O.

e Linear approximation

T—T():MgL

= T = MgL(cos0°)(0 —0°) = MglL#6

e The approximation is good for —7/4 < 0 < w/4.

For a swing within £30°, the linearize response is within
2% of the actual nonlinear pendulum response.
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Laplace Transform

e Suppose f(t) satisfies
(o @]
/ f()eTtdt < oo
0

for some finite real o

e Define the Laplace transform as
o0
F(s) = / F(t)estdt
0

(3
F(s) = Z[f()]
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e Comparison

Time domain Frequency domain
f(@) F(s)
t € Rt s € C
differential equation algebraic equation

e We will apply Laplace transforms to LTI
continuous-time systems to make our lives easier.

Looking to the future, z-transforms will be used in LTI
discrete-time systems.
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Laplace Transform

Laplace Transform

e Laplace transform theorems.
—multiplication by a constant
ZIkf(t)] = kF(s)
—sum and difference
Z[f1(t) £ f2(t)] = Fi(s) £ Fa(s)

— differentiation

2| GFO] = sP(s) = £0)

d" _ N n—1
Z [ﬁf(t)l = s"F(s) — s"7*f(0) — ...
— sf"7%(0) — f"7Y(0)
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Laplace Transform

e Laplace transform theorems.

t _ F(s)
ﬁ[/o f(T)dT] =

—integration

—shift-in-time
ZL[ft— T)us(t—=T)] = e "*F(s)

—initial-value theorem

e Laplace transform theorems.

—complex shifting
2% [eqcatf(t)] — F(s+a)
—real convolution

t
Fi(s)F(s) = & {/0 fl("')fz(t—T)dT]
= Z[f1(t) * fa(t)]

e Other important Laplace stuff.

—inverse Laplace transform.
— partial fraction expansions.
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lim f(t) = lim sF(s
lim £(t) = Jim sF(s)
—final value theorem
lim f(t) = lim sF(s
t—o00 ( ) s—0 ( )
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Summary

e Differential equations and Laplace transform.

e Simple to handle linear time-invariant systems.

e Why state-space representation?

e Nonlinear equations and linearization.
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