• Basic math tools.

• Linear time-invariant systems.

• State-space representation.

• Linearization.

Basic Math Tools

©2002 M.C. Ramos UP EEE Institute

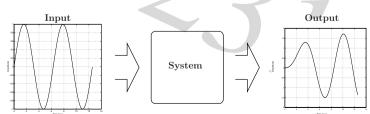
Differential Equations

• An n-th order differential equation (DE) is

$$a_{n+1} \frac{d^n y(t)}{dt^n} + \dots + a_2 \frac{dy(t)}{dt} + a_1 y(t) = f(t)$$

 \Rightarrow homogenous if $f(t) = 0$

• Input-output relationship.

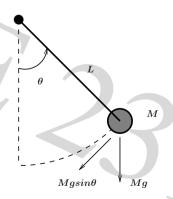


- Dynamic systems are usually represented or modeled by differential equations.
 - -linear ODE
 - -nonlinear ODE
 - -partial differential equations (PDE)
- Ordinary differential equations (how to solve them).
- -classical approach
- -Laplace transforms

Basic Math Tools ©2002 M.C. Ramos EE 231 UP EEE Institute

Differential Equations

• Nonlinear differential equations.



$$ML^2 \frac{d^2\theta(t)}{dt^2} + Mg\sin\theta(t) = 0$$

Differential Equations

Linear Time-invariant Systems

System

• Example. Second-order differential equation.

$$\frac{d^2}{dt^2}x(t) + 3\frac{d}{dt}x(t) + 2x(t) = 5u(t)$$

Initial conditions.

$$x(0) = -1$$
 $x^{1}(0) = \frac{dx(t)}{dt}\Big|_{t=0} = 2$

Solution.

$$x(t) = \frac{5}{2} - 5e^{-t} + \frac{3}{2}e^{-2t}, t \ge 0$$

Basic Math Tools EE 231 ©2002 M.C. Ramos UP EEE Institute Basic Math Tools EE 231 i = 1, 2

©2002 M.C. Ramos

- Linear system satisfies
 - -superposition
 - -homogeneity

• Linear systems

 $f_i(t)$

UP EEE Institute

 $y_i(t)$

Linear Time-invariant Systems

• Linear systems

I: Superposition II: Homogeneity
$$f(t) = f_1(t) + f_2(t)$$
 $f(t) = \alpha f_i(t), \ \alpha \in \Re$ ψ ψ $y(t) = y_1(t) + y_2(t)$ $y(t) = \alpha y_i(t)$

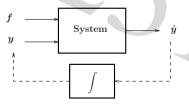
• Time-invariant linear systems (LTI)

State-space Representation

• Consider a first-order ODE.

$$egin{array}{ll} a_2 \dot{y} &+& a_1 y &=& f \ & \downarrow & & \downarrow \ \dot{y} &=& rac{-1}{a_2} a_1 y &+& rac{1}{a_2} f \end{array}$$

• We can now simulate the system by

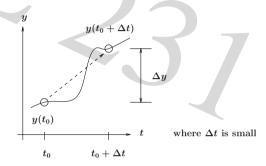


State-space Representation

State-space Representation

• Output $\dot{y}(t_0)$ is a function of $f(t_0), y(t_0)$

$$egin{aligned} \dot{y}(t_0) &pprox rac{y(t_0 \ + \ \Delta t) \ - \ y(t_0)}{\Delta t} \ & \downarrow \ y(t_0 \ + \ \Delta t) \ = \ y(t_0) \ + \ \dot{y}(t_0) \Delta t \end{aligned}$$

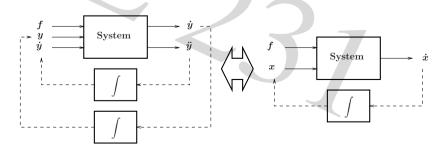


Basic Math Tools EE 231 ©2002 M.C. Ramos UP EEE Institute

State-space Representation

• Then ...

$$\dot{x} = \underbrace{\left[egin{array}{c} \dot{y} \\ -1 \\ \hline a_3 (a_2 \dot{y} \ + \ a_1 y) \end{array}
ight]}_{ ext{depends on } x} \ + \ \underbrace{\left[egin{array}{c} 0 \\ 1 \\ \hline a_3 \end{array}
ight]}_{ ext{depends on } f$$



• Now consider a second-order ODE.

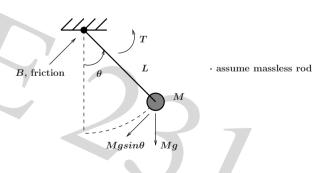
• Define a vector

$$x \equiv \begin{bmatrix} y \\ \dot{y} \end{bmatrix} \Rightarrow \dot{x} \equiv \begin{bmatrix} \dot{y} \\ \ddot{y} \end{bmatrix} \leftarrow \text{function of } x \\ \leftarrow \text{function of } x \text{ and } f$$

Basic Math Tools EE 231 ©2002 M.C. Ramos UP EEE Institute

State-space Representation

• Example. Simple pendulum.



• Dynamic equation.

$$ML^2\ddot{\theta} + B\dot{\theta} + MgL\sin\theta = T$$

• State equation.

$$egin{align} y &\equiv egin{bmatrix} heta \ \dot{ heta} \end{bmatrix} &\Rightarrow \dot{y} \equiv egin{bmatrix} heta \ \ddot{ heta} \end{bmatrix} \ \ddot{ heta} &= -rac{1}{ML^2}(B\dot{ heta} + MgLsin heta) + rac{1}{ML^2}T \ \dot{y} &= egin{bmatrix} \dot{ heta} \ \ddot{ heta} \end{bmatrix} = egin{bmatrix} heta \ -rac{1}{ML^2}(B\dot{ heta} + MgLsin heta) \end{bmatrix} + egin{bmatrix} 0 \ rac{1}{ML^2} \end{bmatrix} T \ \end{pmatrix}$$

State-space representation is important in control design and is useful in simulation of system behavior.

Basic Math Tools ©2002 M.C. Ramos EE 231 UP EEE Institute

Linear Approximations

- But y = mx + b may be linear about an operating point.
- Operating point, set point : x_0 , y_0
- For small changes Δx and Δy $x = x_0 + \Delta x \text{ and } y = y_0 + \Delta y$ y = mx + b $\Rightarrow y_0 + \Delta y = mx_0 + m\Delta x + b$ $\Rightarrow \Delta y = m\Delta x \text{ (satisfies necessary conditions)}$

• Necessary conditions for linear systems.

- principle of superposition
- -property of homogeneity

• Examples.

$$-y = x^2$$

not linear (does not satisfy superposition)

$$-y = mx + b$$

not linear (does not satisfy homogeneity)

Basic Math Tools ©2002 M.C. Ramos
EE 231 UP EEE Institute

Linear Approximations

- Mechanical and electrical elements : linear over large range of variables.
- Thermal and fluid elements: highly nonlinear.
- Assume a general model : y(t) = g[x(t)]
 - -x(t): input variable
 - -y(t): response variable
 - $-g(\cdot)$: nonlinear function relating y(t) and x(t)

Linear Approximations

- Assume $g(\cdot)$ is continuous within some range of interest.
- Taylor series expansion.

$$y = g(x) = g(x_0) + \left. \frac{dg}{dx} \right|_{x=x_0} \frac{(x - x_0)}{1!} + \left. \frac{d^2g}{dx^2} \right|_{x=x_0} \frac{(x - x_0)^2}{2!} + \dots$$

• Example (at
$$x_0 = 0$$
). $e^x = 1 + x + \frac{1}{2}x^2 + \dots$

Basic Math Tools EE 231 ©2002 M.C. Ramos UP EEE Institute

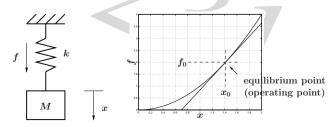
Linear Approximations

• Rewriting as a linear equation.

$$(y - y_0) = m(x - x_0)$$

 $\Delta y = m\Delta x$

• Example. Nonlinear spring.



Linear Approximations

• The slope at the operating point,

$$\left. \frac{dg}{dx} \right|_{x=x_0}$$

may be used to approximate the curve over a small range of $(x - x_0)$.

• Approximation for y(t) is then

$$y = g(x_0) + \frac{dg}{dx}\Big|_{x=x_0} (x - x_0) = y_0 + m(x - x_0)$$

where m is the slope at the operating point.

Basic Math Tools ©2002 M.C. Ramos
EE 231 UP EEE Institute

Linear Approximations

• Equilibrium point : spring force = gravitational force

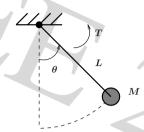
$$f_0 = Mg$$

- Nonlinear spring : $f = x^2 \Rightarrow x_0 = \sqrt{Mg}$
- ullet Linear model for small perturbations about x_0 is

$$\Delta f = m \Delta x$$
 where $m = \left. rac{df}{dx}
ight|_{x_0} = \left. 2x_0
ight|_{x_0}$

Linear Approximations

• Example. Pendulum oscillator.





ullet Torque on pendulum mass is $T = MgL\sin\theta$. Relationship between T and θ is nonlinear.

Basic Math Tools EE 231 ©2002 M.C. Ramos UP EEE Institute

Laplace Transform

• Suppose f(t) satisfies

$$\int_0^\infty |f(t)e^{-\sigma t}|dt < \infty$$

for some finite real σ

• Define the Laplace transform as

$$F(s) = \int_0^\infty f(t)e^{-st}dt$$

$$\updownarrow$$

$$F(s) = \mathcal{L}[f(t)]$$

Linear Approximations

- Equlibrium point : $\theta_0 = 0^o \Rightarrow T_0 = 0$.
- Linear approximation

$$T - T_0 = MgL \frac{\partial sin\theta}{\partial \theta} \Big|_{\theta = \theta_0} (\theta - \theta_0)$$

 $\Rightarrow T = MgL(cos0^o)(\theta - 0^o) = MgL\theta$

• The approximation is good for $-\pi/4 \leq \theta \leq \pi/4$. For a swing within $\pm 30^{o}$, the linearize response is within 2% of the actual nonlinear pendulum response.

Basic Math Tools EE 231 ©2002 M.C. Ramos UP EEE Institute

Laplace Transform

• Comparison

Time domain

Frequency domain

$$f(t)$$
 $t \in \mathbb{R}^+$ differential equation

F(s) $s \in \mathbb{C}$ algebraic equation

• We will apply Laplace transforms to LTI continuous-time systems to make our lives easier.

Looking to the future, z-transforms will be used in LTI discrete-time systems.

Laplace Transform

Laplace Transform

- Laplace transform theorems.
 - multiplication by a constant

$$\mathscr{L}[kf(t)] = kF(s)$$

-sum and difference

$$\mathscr{L}[f_1(t) \pm f_2(t)] = F_1(s) \pm F_2(s)$$

- differentiation

$$\mathscr{L}\left[\frac{d}{dt}f(t)\right] = sF(s) - f(0)$$

$$\mathcal{L}\left[\frac{d^{n}}{dt^{n}}f(t)\right] = s^{n}F(s) - s^{n-1}f(0) - \dots - sf^{n-2}(0) - f^{n-1}(0)$$

Basic Math Tools EE 231 ©2002 M.C. Ramos UP EEE Institute

Laplace Transform

- Laplace transform theorems.
 - -complex shifting

$$\mathscr{L}\left[e^{\mp at}f(t)\right] = F(s\pm a)$$

-real convolution

$$egin{aligned} F_1(s)F_2(s) &= \mathscr{L}\left[\int_0^t f_1(au)f_2(t- au)d au
ight] \ &= \mathscr{L}[f_1(t)*f_2(t)] \end{aligned}$$

- Other important Laplace stuff.
 - -inverse Laplace transform.
 - partial fraction expansions.

- Laplace transform theorems.
 - integration

$$\mathscr{L}\left[\int_0^t f(au)d au
ight] \;=\; rac{F(s)}{s}$$

-shift-in-time

$$\mathcal{L}[f(t-T)u_s(t-T)] = e^{-Ts}F(s)$$

-initial-value theorem

$$\lim_{t \to 0} f(t) = \lim_{s \to \infty} sF(s)$$

-final value theorem

$$\lim_{t\to\infty}f(t)\ =\ \lim_{s\to 0}sF(s)$$

Basic Math Tools EE 231 ©2002 M.C. Ramos UP EEE Institute

Summary

- Differential equations and Laplace transform.
- Simple to handle linear time-invariant systems.
- Why state-space representation?
- Nonlinear equations and linearization.