Solution of # = Ax Using Laplace

e Laplace transform

e Solving * = Az using Laplace transform

e State transition matrix

e Matrix exponential

e Qualitative behavior and stability
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Laplace Transform of a Matrix-valued Function

Laplace Transform of a Matrix-valued Function

e Derivative property.

Z(z2) = sZ(s) — z(0)

e We can see this by integrating by parts.

ZL(2)(s) = /0 ooz'(t)e_Stdt

—st t —st
=e ° z(t)‘ + s/ z(t)e °'dt
t=0 0

= sZ(s) — z(0)
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e Suppose z : Ry — RPX4

Laplace transform : Z = Z(z), where
Z : D C C — CP*X4ijs defined by

Z(s) = /Oooz(t)e_Stdt

—uppercase denotes Laplace transform.
— D is the domain or region of convergence of Z.

— D includes at least {s | Rs > a}, where a satisfies
|lz(t)|] < ae® fort > 0.
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Laplace Transform Solution of + = Ax

e Consider a continuous-time time-invariant LDS
r = Ax

fort > 0, where x(t) € R™.

e Take the Laplace transform. sX(s) — x(0) = AX(s).
Rewrite as (sI — A)X(s) = z(0).
Thus, X(s) = (sI — A)7lz(0).

—(sI — A)~!is called resolvent of A.

—resolvent is defined for s € C except at eigenvalues of
A, i.e., s such that det(sI — A) = 0.
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Laplace Transform Solution of & = Ax
e Given
X(s) = (sI — A)"lz(0)
Take the inverse transform
2(t) = 27 [(sI — A) Y2(0)
= ®(t)z(0)

~®(t) = L (sI — A)~!]is called the state

transition matrix.
—note that x(t) is a linear function of the initial state

x(0).
z(t) = @(t)z(0)
;:\Etgllx;mous Linear Systems l(g?gik[[)(‘ ]":amo:
Laplace Transform Solution of + = Ax
e State transition matrix.
1 1 i
B(t) — ! - s . co.st sint
s2 4+ 1|—-1s —sint cost
e e

e Thus, we have
cost sint s
x(t) = ) (0) AR
—sint cost NN~ - /
TN N ~— A
AN N~ 2
L i i e
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Laplace Transform Solution of & = Ax

. 01
e Example. £ = [_1 0] x.
e Resolvent.
—1
=1 s -1 _ 1 s 1
o= as [0V =l n

e Eigenvalues are +j.
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Laplace Transform Solution of + = Ax
. 01
e Example. © = lo 0] x.
e Resolvent.
-1
- -1 _ s —1 B l s1
o=t - [0 -]l

e Eigenvalue is 0 (with multiplicity 2).
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Laplace Transform Solution of & = Ax Characteristic Polynomial

e State transition matrix. e Characteristic polynomial of A : X(s) = det(sI — A).
®(t) = 21 {i ls 1] } _ [1 t} — X (s) is a polynomial of degree n.
s2|0s 01 —roots of X are the eigenvalues of A.
— X has real coefficients, so the eigenvalues are either
real or occur in conjugate pairs.
—there are n eigenvalues (with multiplicity considered).
e Thus we have 777~ =~===~=
1t P I e The 7,7 element of the resolvent can be expressed as
z(t) = lo 1]”0(0) B (_1yiti__detAij
J=——————— det(sI — A)
L L where A;; is the matrix sI — A with the jth row and
ith column deleted (cofactor).
BEany e P EEE Depastmeus BEly P EEE Depastmeun
Characteristic Polynomial Matrix Exponential
e The det A;; is a polynomial of degree less than n. e We can write
Thus, the i, j element of the resolvent has the form I-C)tlt=1+cCc+ 0+ cC®+
fij if the series converges.

X (s)

where f;; is a polynomial of degree < n.
e Series expansion of the resolvent.

. 1 A\ I A A2
e The poles of the elements of the resolvent are S £ s s

eigenvalues of A. Valid for large enough |s|. Thus,

() = Z[(sI — A = I + At + (At)2
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Matrix Exponential

e Similar to the series expansion of the exponential
function.

at)?
eat:1+at+(2') +
with matrix A instead of scalar a.
e Definition. Matrix exponential.
M2

eM:exp(M):I—FM—}—?-{-

for M € R™ "™ (converges for all M).
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Matrix Exponential

Matrix Exponential

e The state transition matrix may then be expressed as

®(t) = ZL[(sI — A7 = At

e Note that properties of scalar exponential does not
necesarily hold. For example,

cAcB _ JA+B

does not in general hold.

We have edeP = eA1B if and only if A and B
commute, i.e., AB = BA.
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Matrix Exponential

e Example.

01 01
t=hel o m =
e Thus,
LA _ [ 054 084 B _ [11
—0.84 0.54 01
AB _ [ 054 1.38 0.6 1.40] _ aip
cc = [—0.84 —030| 7 |—0.700.16] T ©
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e Thus, for t,s € R, etdes4 = et+s) A,

Also, eAl is nonsingular and the inverse is given by

(eAt)—l — e—At

e Example. Find e where A = lo 1]

00
We found from the inverse Laplace of the resolvent that
At -1 —1 1t
e = ¥ s — A ] =
o1 = 4) 01
Autonomous Linear Systems (©2002 M.C. Ramos
EE 212 UP EEE Department



Matrix Exponential Time Transfer Property

e For &+ = Aa}' we know
e Thus, evaluating at t = 1, we get ed = l(l) 1]
z(t) = ®(t)x(0) = eAtw(O)

This means that the initial condition x(0) evolves into

: At
e From the power series expansion the state at time ¢ based on e“".

A2
A _ _
e—I—I-A-I-—z'-I----—I-i—A

e In general we write

since A" = 0forn = 2,3,.... At
x(r + t) = ex(r)
This means that the current state z(7) evolves into a
state t seconds forward in time.
;:\Etgllx;mous Linear Systems I(EZISE;)II)C ]":amo: é;ét;llxgmous Linear Systems L?Z}S}gé%(‘ ]}nnof
Time Transfer Property Time Transfer Property
e Recall the first-order forward Euler approximation for e Example. Sampling a continuous-time system.
small ¢. . )
Suppose £ = Axz. Sample x at times t1 < to <
z(r + t) = z(r) + te(r) = (I + At)z(1) Define z(k) = x(t3), then

z(k + 1) = eAlkr1—tr) 2 (k)
e Exact solution is

For uniform sampling tx41 —t = h, so
z(r + t) = eAla(r)

(Ar)? z2(k + 1) = eAPz(k)

= I + At + 21

+ .| x(7r)

e A discrete-time linear difference equation (or discretized
version of the continuous-time system).

Autonomous Linear Systems (©2002 M.C. Ramos Autonomous Linear Systems (©2002 M.C. Ramos
EE 212 UP EEE Department EE 212 UP EEE Department



Time Transfer Property

e Example. Piecewise-constant system.

Consider + = A(t)x with A(t) = A; for
t; < t < tjy1, wherety < t3 <

(sometimes called a jump linear system).

@ Then for t; < t < t;41 we have

z(t) = edilt—t) eA2lts—t2)eA1(ta—t1) (4,
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Qualitative Behavior of x(t)

Expressions for the Matrix Exponential

e Suppose & = Az, z(t) € R™.
Then z(t) = eAtz(0), and X(s) = (sI — A)~lz(0).

e The ith component X;(s) has the form

a;i(s)

Xi(s) = X(s)

where a;(s) is a polynomial of degree < mn.

e Thus, the poles of X;(s) are all eigenvalues of A (but the
converse is not necessarily true).
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A2
e Power series. e = T + A + or +

e Diagonal form with A = TDT 1.

At)?
et =T + At + (2') +
(Dt)?
=T(I + Dt + ( 2’) + )T = TPl

Jordan form with A = TJT—L Computing powers of J
is more difficult but manageable.

e Laplace transforms. edt = ¢—1 [(sI — A)_l}.
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Qualitative Behavior of x(t)

e Assume that the eigenvalues \; are distinct; X;(s)
cannot have repeated poles.

A I's
Then x;(t) has the form
n X
4 At
zi(t) = Y Bije X N
Jj=1 -~
where 3;;’s depend (linearly) %
on x(0).
X
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Qualitative Behavior of x(t)

e Eigenvalues determine (possible) qualitative behavior of
x.

—eigenvalues give exponents that can occur in
exponentials.

—real eigenvalues A corresponds to an exponentially
decaying or growing term e in the solution.

—complex eigenvalue A = o + jw corresponds to
decaying or growing sinusoidal term e?? cos(wt + o)
in the solution.

— ¥\, gives the exponential growth (or decay) rate.
—3A;j gives the frequency of oscillation.
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Stability

e System & = A is stable if eAt 5 0ast — oo.

e Interpretation.

—state x(t) converges to 0, as t — oo for any x(0).
—all trajectories of € = Ax converge to 0 ast — oo.

e System & = Aux is stable if and only if all eigenvalues of
A have negative real parts.

RN, < 0, Tt = 1,...,m
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Qualitative Behavior of x(t)

e Now suppose A has repeated eigenvalues, so X; can have
repeated poles.

e Express the eigenvalues as Aq,..., A, (distinct) with
multiplicities nq,...,n,, respectively

(ny + «o. + np = n).
e Then z;(t) has the form
r
zi(t) = > pi;(t)e’
J=1

where p;;(t) is a polynomial of order < m; (the
polynomial depends linearly on x(0)).
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Stability

e With all eigenvalues having negative real parts and for
any polynomial p(¢),

lim p(t)er = 0
t — oo

We will also show later that stability implies R\; < 0.

e In general, max; R\; determines the maximum
asymptotic logarithmic growth rate of x(t) (or decay if
< 0).
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Summary

e Laplace transform

e Solving * = Az using Laplace transform

e State transition matrix

e Matrix exponential

e Qualitative behavior and stability
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Eigenvectors and Eigenvalues : Review

Eigenvectors and Diagonalization

e Definition. A € C is an eigenvalue of A € R™*X™ if
XA) = det(A\I — A) =0

o If )\ is an eigenvalue <
there exists a nonzero v € C™ such that
(ML — A)v =0, ie.,
Av = v

Such a v is termed an eigenvector of A associated with
the eigenvalue \.
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e Eigenvectors

e Dynamic interpretation : invariant sets

e Complex eigenvectors and invariant planes

e Left eigenvectors

e Diagonalization and modal form

e Discrete-time stability
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Eigenvectors and Eigenvalues : Review

o If )\ is an eigenvalue <
there exists a nonzero w € C™ such that
wl (AT = A) =0, i.e.,
wlA = xwT

Such a w is called a left eigenvector of A.

e Conjugate symmetry. If v € C" is an eigenvector
associated with A € C, then v is the eigenvector
associated with A.

Av = v = Av = A\v = AU = MU
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Eigenvectors and Eigenvalues : Review

Dynamic Interpretation

e Scaling. If v is an eigenvector, the effect of A on v is
similar to scaling v by .

-A € R, A > 0.

v and Av point in the same A
direction. - -

_A E R, A < 0. 1
v and Av point in opposite
directions.

-A € R, N\ < 1.

v is larger than Awv.
-\ € R, |)\| > 1. T4 x5

v is smaller than Awv.

y

R"
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Dynamic Interpretation

e Suppose Av = v, v # 0.
If i = Az and £(0) = v, then z(t) = eMv.

e To see this, use (At)kv = (At)kv.

At)?
x(t) — eAly — I + At + (2') + ...|lv
(At)?
=v + Av + Y v +
= e)‘t'v
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Invariant Sets

e Interpretation

—if the initial state is an eigenvector v, the resulting
motion is simple — the motion is on the line spanned
by v.

—the solution x(t) = e*w is called the mode of the
system & = Ax associated with the eigenvalue \.

At

e Remarks about the mode.

—for A € R"and A < 0 : the mode contracts or
decreases as t increases.

—~for A\ € R"and A > 0 : the mode expands or
increases as t increases.
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e A set S C R" is invariant under
& = Awx is whenever x(t) € S, then
x(t) € S forall > t,i.e., once the
trajectory enters S, it stays in S.

. , trajectory x(t)
e Vector field interpretation.

Trajectories only cut into S, never
leaves.

e Suppose Av = v, v # 0, A € R,
—line {tv | t € R} is invariant.
—if A < 0, line segment {tv | 0 < t < a} is invariant.
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Complex Eigenvectors

e Suppose Av = Av, v # 0, A complex.

For a € C, (complex) trajectory aeMy satisfies
r = Ax.
e Thus, the (real) trajectory also satisfies @ = Aw.

xz(t) = R <ae>‘t>

_ oot [Vre Vin] cos wt sinwt «
- re tmil _sinwt coswt | | —8
where

vV = Vre + JVims A = 0 + jw, a = a + 30

Autonomous Linear Systems (©2002 M.C. Ramos
EE 212 UP EEE Department

Dynamic Interpretation : Left Eigenvectors

Complex Eigenvectors

e Suppose wT'A = AwT,w # 0. Then

d
a(wT.’n) = wli = wlAz = A(w!x)

i.e., wTz satisfies the DE d(wTz)/dt = \(wTx).

e Hence, wlz = eMwTx(0).

Ty is simple.

—even if trajectory x is complicated, w
—if real A < 0, halfspace {z | wTz < a} is invariant

(for a > 0).
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e Remarks on

coswt sinwt «
B(t) = " lore Vi) ] [ ]

— sin wt cos wt —B

—the trajectory stays in the invariant plane
span{vye; Vim }-
— o gives the logarithmic growth / decay factor.
—w gives the angular velocity of rotation in the plane.
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Dynamic Interpretation : Left Eigenvectors

e Other remarks.
—right eigenvectors are initial conditions from which
resulting motion is simple.

—left eigenvectors give linear functions of state that are
simple for any initial condtion.
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Dynamic Interpretation : Left Eigenvectors

Dynamic Interpretation : Left Eigenvectors

state trajectory

e Eigenvalues are —1,

-1 —-10 —10
e Example. Consider ¢ = 1 0 0 x. +7v10.
0 1 0 . .
Trajectory with 3.
Block diagram. z(0) = [0 —11]T. 3
é: o
1 T2 T3
v 1 1 1
o s s s )
e Left eigenvector S
@ @ associated with eigenvalue
—1is wlz(t) for z(0) = [0 —1 1]
- - 0.1 &
E
w = 0
- 2 _ 2 1 t
X(s) = s 4+ s 4+ 10s + 10 = (s + 1)(s® + 10)
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EE 212

Dynamic Interpretation : Left Eigenvectors

Dynamic Interpretation : Left Eigenvectors

state trajectory

e Eigenvector associated with eigenvalue +3+/10 is T
—0.554 + 30.771 ¥
v = 0.244 + ,7:0-175 e For example, with g o
0.055 — 50.077 z(0) = vye we have S z

e So an invariant plane is spanned by
e For any time instant £, we can always find a1, a2 € R

—0.554 0.771
Vre = 0.244 Vi = 0.175 such that
0.055 —0.077 —0.554 0.771
x(t) = ap | 0.244 + as | 0.175
0.055 —0.077
UB REE Departmens UB REE Depattomns
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Dynamic Interpretation :

Left Eigenvectors

e Example. Markov chain.

Probability distribution satisfies (p + 1) = Pp(¢).

e Since p;(t) = Prob[z(t) = i]so Y i ,p;(t) = 1.

e Stochastic matrices.

P;; = Prob[z(t + 1)

SO Z;l:leJ = 1.
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Review

Dynamic Interpretation : Left Eigenvectors

e Diagonalization.

Suppose v1,v2,...,V, are linearly independent

eigenvectors of A € R"*X™.

A’U,L' = )\ivi,

e We can express this as

A['vl v2 ...

Autonomous Linear Systems
EE 212

vp] = [vy vy ...

(©2002 M.C. Ramos
UP EEE Department

e We can rewriteas [11 ... 1|]P = [11 ... 1]
ie., [11 ... 1] is a left eigenvector of P (and A = 1).

e Thus, det(I — P) = 0. Hence, there is a right
eigenvector v # 0 with Pv = w.

It can be shown that v can be chosen so that v; > 0, so
we can normalize v such that ) ;- ;v; = 1.

e Interpretation. v is an equilibrium distribution, i.e., if
p(0) = v then p(t) = v forallt > 0.

If v is unique, it is called the steady-state distribution of
the Markov chain.
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Diagonalization : Review

e Define T = [v; v2 ... vp] and
A = diag(A1,A2,...,An), so that
AT = TA
e Thus,
T AT = A

T~ exists since vy, va, ..., v, are linearly independent.

e T is a similarity transformation that diagonalizes A.
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Diagonalization : Review

® We can also use the left eigenvectors for diagonalization.

Rewrite T"1AT = AasT 1A = AT L,

wT wT
- T , T T r r}p

Assigning, wi , Wy ,...,Ww,, w w
21 A = A 2

as the rows of T~ we get : :
T T
wn wn

e Thus, waTA = AszT

The rows of T~ are left eigenvectors. They are also
normalized so that
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Real Modal Form

Modal Form

e When eigenvalues (in T') are complex, the system can be
put in real modal form.

S~1AS = diag <Ar,[ Ir+1 “’T“] ,...,[ In “’"D

—Wr41 Opr41 —Wn On
where A, = diag(Aq,...,Ar) are the real eigenvalues,
and \;, = o; + jw;,t = r+1,...,n are the complex
eigenvalues.

e Block diagram of
’complex mode.’
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e Suppose A is diagonalizable by T'.

Define new coordinates by * = Tz, so

Ty = AT = 2 = T AT = % = A%

Ty Ty

e In the new coordinate U 1

S S

system, system is XX

decoupled (A diagonal). % 4@F

e Trajectories consists of n independent modes, i.e.,

i(t) = eM'E;(0)

Y
Y

Hence the term modal form.
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Real Modal Form

e Diagonalization simplifies many matrix expressions.

e Matrix powers (useful in discrete-time solution).
AF = (TAT1)F
= (TAT™Y...(TAT™Y)
= TA*T™!
= T - diag(A¥,..., AF) . 771

Holds for £ < 0, only if A is nonsingular, i.e.,
eigenvalues of A are all nonzero.¢
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Real Modal Form

Generalized Modes

e Take the resolvent.
(sI — At = (sTT™! — TATH™?!
= [T(sI — AT 17!
=T(sI — A)~IT™1

. 1 1 1
=T -diag| —,...,——— | - T
s — A1 s — An

e Matrix exponential (for continuous-time solution).
ed =1 + A + A%)2! 4
=1 + TAT™! + (TATYH%/2! +
=TI + A + A%2/2! + ..)T! = TeAT !
=T-. diag(e)‘l, RN e)‘") .71
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Generalized Modes

e Consider an autonomous linear system

& = Az with A not diagonalizable

We can put this in the form r = J& by the change of
coordinates x = Ta.

e System is decomposed into independent ’Jordan block’
systems’ ; = J;T;.

The Jordan blocks are also referred to as Jordan chains.
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Generalized Modes

e Consider * = Ax, with

x(0) = ajv;; + + anvin, = Tia

e Then z(t) = T;e’ita.

—trajectory stays in the span of generalized eigenvectors.

— coefficients have the form p(t)e)‘t, where p is a
polynomial.

—such solutions are called generalized modes of the
system.

Autonomous Linear Systems (©2002 M.C. Ramos
EE 212 UP EEE Department

e With general x(0), we can write

z(t) = etz(0) = Te!'T'z(0)

q
=Y T[S z(0)]
=1
where
ST
T_]' = H
T
Sq
e All solutions of £ = Ax are linear combination of

(generalized) modes.
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Solution Using Diagonalization

e Assume A is diagonalizable.
Consider & = Az with TAT~! = A. Then
z(t) = etz (0)
= TeMT12(0)

= eritfw] z(0)]v;
1=1

e Thus, any trajectory can be expressed as a linear
combination of modes.
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Solution Using Diagonalization

Solution Using Diagonalization

e Group eigenvalues into those with negative real parts
and others.
§RA1 < 0, ce ey %AS < 0,
RA\s+1 = 0,..., R\, > 0,

e From x(t) =
x(t) — O0is

o eAit[w;-Tm(O)]vi, the condition for

x(0) € span{vi,...,vs}
or equivalently,

szm(O) = 0, i = s+1,...,m
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e Interpretation.

—decompose (using left eigenvectors) the initial state
x(0) into modal components 'wZT:B(O)

— eMit term propagates ith mode t seconds (forward).

—reconstruct state as linear combination of (right)
eigenvectors.

e Application. For what x(0) do we have z(t) — 0 as
t — oo?
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Stability of Discrete-time Systems

s
nt

e Discrete-time linear system x(t + 1) = Ax(t).
State solution is z(t) = Alx(0).

e Suppose A is diagonalizable. Consider discrete-time
linear dynamical system x(t + 1) = Ax(t).

If A = TAT™ !, then A* = TA¥T—!. Then
n
z(t) = Alz(0) = > Xwl=z(0)]v; — 0
=1
as t — oo for all (0) if and only if

Il < 1, t = 1,...,n
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Stability of Discrete-time Systems

e We can show (later) that this is true even if A is not
diagonalizable.

e Linear DTS stability.

System x(t + 1) = Ax(t) is stable if and only if all
eigenvalues of A have magnitude less than one.

More on this in EE 233.
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Summary

e Eigenvectors

e Dynamic interpretation : invariant sets

e Complex eigenvectors and invariant planes

e Left eigenvectors

e Diagonalization and modal form

e Discrete-time stability
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