Today’s Lecture Autonomous Linear Systems

e Autonomous linear dynamical systems e Continuous-time autonomous linear system.

r = Ax
e Higher-order systems .
—x(t) € R" is called the state.
—mn is the state dimension or the number of states.
e Linearization near the equilibrium point — A is the dynamics matrix. A
T2
Linearization along the traject &
e Linearization along the trajectory e Phase plane (locus of z(t)
on R™). z(t)
>
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Block Diagram Representation

Autonomous Linear Systems
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Linear Circuit

Chemical Reactions

e Circuit equations are

dv, _
dt

lc,

C = diag(Cy,...
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e With state x = l i
l

dz ;
dt L/ )
»Cp), L = diag(Ly,...,Ly)

] , we have

Chemical Reactions

(©2002 M.C. Ramos
UP EEE Department

e Chemical reaction involving n chemicals, xz; is the
concentration of chemical z.

e Linear model of reaction kinetics
dmi
dt

Good model for many reactions; A is usually sparse.

= a;1°1 + ... + Q;pTn

e Example. Series reaction.
k k
A3 B3
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Finite-state Discrete-time Markov Chain

e Linear dynamics.

e Plot for k4 = ks = 1 and

initial conditions
z(0) = (1,0,0).
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elet z(t) € {1,...,n} be a random sequence with
Prob[z(t + 1) = ¢ | 2(t) = j] = P;;

where P € R™*™ is the matrix of transition
probabilities.

e If we represent the probability distribution of z(t) as an
n-vector

Prob[z(t) = 1]

p(t) = *

Prob[z(t) = n]
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Finite-state Discrete-time Markov Chain

Finite-state Discrete-time Markov Chain

and since
Prob[z(t + 1) = i] =
Y Problz(t + 1) = i|z(t) = k]-Prob[z(t) = k]
k=1

then we have p(t + 1) = Pp(t).

e P is often a sparse matrix.
The Markov chain may be depicted graphically.

—nodes are states and
—edges show transition probabilities.
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Numerical Integration of Continuous-time Systems

e Example. ATM machine or branch interchange.

—state 1 : system UP.
—state 2 : system DOWN.
—state 3 : system under repair.

0.9 0.7 1.0
p(t + 1) = |0.10.1 0 |p(t)
0 0.2 0
0.2

Numerical Integration of Continuous-time Systems

e Compute the approximate solution of t = Ax with
x(0) = xo.

e Suppose h is a small time step (i.e., x does not change
much in the span of h seconds).

The forward Euler approximation is

xz(t + h) = z=(t) + hz(t) = (I + hA)x(t)
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e Performing this iteration (discrete-time systems)
starting at £(0) = xg, we get

z(kh) = (I + hA)*z(0)

e Forward Euler is conceptually simple but never used in
actual computations.
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Higher-order Linear Systems

Higher-order Linear Systems

e Given

z(F) — Ak_lw(k_l) + + Alzc(l) + Apx

where x(t) € R™ and (™) denotes the mth derivative.

e Define
T
2(1) nk
z = € R
i
2(k—1)
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Higher-order Linear Systems

e Thus

T E
m(2) DRI .

; 0 0 0 ... I
x(F)

| Ag A As ... A,

We have a first-order linear system (with more states).

e Analogous expression for higher-order difference
equations.
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Linearization Near the Equilibrium Point

e Example. Mechanical system (second-order) with k
degrees of freedom under small motions.

MG + Dg + Kq = 0

—q(t) € R is the vector of generalized displacements.

— M is the mass matrix, K is the stiffness matrix and
D is the damping matrix.

e With state x = [g},
. |lq . 0 1
T= gl T |-M~ 'k —M~ D |"
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e Nonlinear, time-invariant differential equation.

T = f(x) where f : R" — R"
e Suppose z¢ is an equilibrium point, i.e., f(xze) = 0 (so
x(t) = =z, satisfies the differential equation).

e Now suppose that x(t) is within the neighborhood of .,
©(t) = flz@t)] = f(ze) + Df(ze)lz(t) — ze
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Linearization Near the Equilibrium Point How Good is the Linearized Model?

e With dx(t) = x(t) — =, rewrite as e The linearized system gives a good indication of the
system behavior near x.? Usually, but not always.

8i(t) ~ Df(ze)dz(t)

e Example. # = — z3 near z, = 0.
For xz(0) > 0, solutions have the form
e A linearized approximation of the differential equation z(t) = [zc(O)_2 + 2t]_1/2.
near Te.
Linearized system is d& = 0; solutions are constant.
0x(t) = Df(xe)dx(t)
e Example. 2 = 23 near z, = 0.

we hope that the solution is a good approximation of For z(0) > 0, solutions have the form

behavior of x — xe.
z(t) = [2(0)"2 — 2t]71/2; blows up near z(0)~2/2.
Linearized system is 42 = 0; solutions are constant.
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How Good is the Linearized Model? Linearization Along a Trajectory
e Systems with very different behavior can have the same e Suppose ®yq; : Ry — R" satisfies

linearized system.
Ltraj (t) = f[:ptraj (t),1]

e Linearized system do not predict the overall behavior of
a system. e Suppose z(t) is another trajectory, i.e.,

©(t) = fle(t), ]

near Tiqj. Lhen

(1) d

dx(t) = 8z2(t) E(a} - wtraj) = f(z,t) — f(mt'raj’t) ~

Dw[f(xt’raj’t)](w - xtra,j)

=(t)
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Linearization Along a Trajectory

e The time-varying linear system
0 = Dzf(xirqj)dx

is called a linearized or variational system along
trajectory ipq; -

e Example. Linearize oscillator.
Suppose T;.4(t) is T-periodic solution of a nonlinear
differential equation.

djtraj = f[mtraj(t)]a mtraj(t + T) = CEtraj(t)
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Summary

Linearization Along a Trajectory

e Autonomous linear systems

e Autonomous linear dynamical systems

e Higher-order systems

e Linearization near the equilibrium point

e Linearization along the trajectory
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e The linearized system is
ox = A(t)dx

where A(t) = Df[x4q;(t)] is T-periodic.

The linearized system is called a T-periodic linear
system.

e Applications in the study of

—startup dynamics of clock and oscillator circuits.

—effects of power supply and other disturbances on
clock behavior.
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