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Today’s Lecture

•Autonomous linear dynamical systems

•Higher-order systems

•Linearization near the equilibrium point

•Linearization along the trajectory
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Autonomous Linear Systems

•Continuous-time autonomous linear system.

ẋ = Ax

– x(t) ∈ Rn is called the state.

–n is the state dimension or the number of states.

–A is the dynamics matrix.

•Phase plane (locus of x(t)
on Rn). ��
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x1

x2

x(t)

ẋ = Ax(t)
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Autonomous Linear Systems

•Example.

ẋ =

[

−1 0
2 1

]
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•Example.

ẋ =

[

−0.5 1
−1 0.5

]
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Block Diagram Representation

•Basic representation of
ẋ = Ax.

∫

A

nn

x(t)ẋ(t)

• If A is block upper triangular, i.e., ẋ =

[

A11 A12
0 A22

]

x,

∫∫

A12

A11 A22+

x1(t)ẋ1(t) x2(t)ẋ2(t)
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Linear Circuit

•Circuit equations are

C
dvc

dt
= ic, L

dil

dt
= vl,

[

ic
vl

]

= F

[

vc
il

]

C = diag(C1, . . . , Cp), L = diag(L1, . . . , Lr)

•With state x =

[

vc
il

]

, we have

ẋ =

[

C−1 0

0 L−1

]

Fx
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Chemical Reactions

•Chemical reaction involving n chemicals, xi is the
concentration of chemical i.

•Linear model of reaction kinetics

dxi

dt
= ai1x1 + . . . + ainxn

Good model for many reactions; A is usually sparse.

•Example. Series reaction.

A
k1
→ B

k2
→ C
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Chemical Reactions

•Linear dynamics.

ẋ =





−k1 0 0
k1 −k2 0
0 k2 0



x

•Plot for k1 = k2 = 1 and
initial conditions
x(0) = (1, 0, 0).
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Finite-state Discrete-time Markov Chain

•Let z(t) ∈ {1, . . . , n} be a random sequence with

Prob[z(t + 1) = i | z(t) = j] = Pij

where P ∈ Rn×n is the matrix of transition
probabilities.

• If we represent the probability distribution of z(t) as an
n-vector

p(t) =





Prob[z(t) = 1]
...

Prob[z(t) = n]




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Finite-state Discrete-time Markov Chain

and since

Prob[z(t + 1) = i] =
n
∑

k=1

Prob[z(t + 1) = i | z(t) = k] · Prob[z(t) = k]

then we have p(t + 1) = Pp(t).

•P is often a sparse matrix.

The Markov chain may be depicted graphically.

– nodes are states and

– edges show transition probabilities.
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Finite-state Discrete-time Markov Chain

•Example. ATM machine or branch interchange.

– state 1 : system UP.

– state 2 : system DOWN.

– state 3 : system under repair.

p(t + 1) =





0.9 0.7 1.0
0.1 0.1 0
0 0.2 0



 p(t)
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Numerical Integration of Continuous-time Systems

•Compute the approximate solution of ẋ = Ax with
x(0) = x0.

• Suppose h is a small time step (i.e., x does not change
much in the span of h seconds).

The forward Euler approximation is

x(t + h) ≈ x(t) + hẋ(t) = (I + hA)x(t)
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Numerical Integration of Continuous-time Systems

•Performing this iteration (discrete-time systems)
starting at x(0) = x0, we get

x(kh) ≈ (I + hA)kx(0)

•Forward Euler is conceptually simple but never used in
actual computations.
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Higher-order Linear Systems

•Given

x(k) = Ak−1x
(k−1) + . . . + A1x

(1) + A0x

where x(t) ∈ Rn and x(m) denotes the mth derivative.

•Define

z =











x

x(1)

...

x(k−1)











∈ Rnk
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Higher-order Linear Systems

•Thus

ż =











x(1)

x(2)

...

x(k)











=













0 I 0 . . . 0
0 0 I . . . 0
... ...
0 0 0 . . . I
A0 A1 A2 . . . Ak−1













z

We have a first-order linear system (with more states).

•Analogous expression for higher-order difference
equations.
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Higher-order Linear Systems

•Example. Mechanical system (second-order) with k
degrees of freedom under small motions.

Mq̈ + Dq̇ + Kq = 0

– q(t) ∈ Rk is the vector of generalized displacements.

–M is the mass matrix, K is the stiffness matrix and
D is the damping matrix.

•With state x =

[

q
q̇

]

,

ẋ =

[

q̇
q̈

]

, =

[

0 I

−M−1K −M−1D

]

x.
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Linearization Near the Equilibrium Point

•Nonlinear, time-invariant differential equation.

ẋ = f(x) where f : Rn → Rn

• Suppose xe is an equilibrium point, i.e., f(xe) = 0 (so
x(t) = xe satisfies the differential equation).

•Now suppose that x(t) is within the neighborhood of xe,

ẋ(t) = f [x(t)] ≈ f(xe) + Df(xe)[x(t) − xe]
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Linearization Near the Equilibrium Point

•With δx(t) = x(t) − xe, rewrite as

δẋ(t) ≈ Df(xe)δx(t)

•A linearized approximation of the differential equation
near xe.

δẋ(t) = Df(xe)δx(t)

we hope that the solution is a good approximation of
behavior of x − xe.
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How Good is the Linearized Model?

•The linearized system gives a good indication of the
system behavior near xe? Usually, but not always.

•Example. ẋ = − x3 near xe = 0.

For x(0) > 0, solutions have the form

x(t) = [x(0)−2 + 2t]−1/2.

Linearized system is δẋ = 0; solutions are constant.

•Example. ż = z3 near ze = 0.

For z(0) > 0, solutions have the form

z(t) = [z(0)−2 − 2t]−1/2; blows up near z(0)−2/2.

Linearized system is δż = 0; solutions are constant.
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How Good is the Linearized Model?

• Systems with very different behavior can have the same
linearized system.

•Linearized system do not predict the overall behavior of
a system.
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Linearization Along a Trajectory

• Suppose xtraj : R+ → Rn satisfies

ẋtraj(t) = f [xtraj(t), t]

• Suppose x(t) is another trajectory, i.e.,

ẋ(t) = f [x(t), t]

near xtraj. Then

d

dt
(x − xtraj) = f(x, t) − f(xtraj, t) ≈

Dx[f(xtraj, t)](x − xtraj)
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Linearization Along a Trajectory

•The time-varying linear system

δẋ = Dxf(xtraj)δx

is called a linearized or variational system along
trajectory xtraj.

•Example. Linearize oscillator.

Suppose xtraj(t) is T -periodic solution of a nonlinear
differential equation.

ẋtraj = f [xtraj(t)], xtraj(t + T ) = xtraj(t)
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Linearization Along a Trajectory

•The linearized system is

δẋ = A(t)δx

where A(t) = Df [xtraj(t)] is T -periodic.

The linearized system is called a T -periodic linear
system.

•Applications in the study of

– startup dynamics of clock and oscillator circuits.

– effects of power supply and other disturbances on
clock behavior.
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Summary

•Autonomous linear systems

•Autonomous linear dynamical systems

•Higher-order systems

•Linearization near the equilibrium point

•Linearization along the trajectory
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