Today’s Lecture

e Multi-objective least-squares

e Regularized least-squares

e Nonlinear least-squares and Gauss-INewton method

e Minimum-norm solution of underdetermined equations

Least-squares and Minimum-norm Methods (©2003 M.C. Ramos
EE 212 UP EEE Department

Multi-objective Least-squares

Multi-objective Least-squares

e Example. Left F = I and g = 0.

We want ||Az — y|| small and at the same time small .

e Plot (J3, J1) for every x.

—shaded area shows (Ja, J7)

achieved by some x € R™. 5 ® ()
20
—clear area shows (Ja,J1) not
achieved by any x € R"™.
2®
J2
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® We discussed minimizing the error norm using
least-squares.

In many problems, we have other goals; we have two (or
more) objectives.

We want to find £ € R"™ such that

~J1 = ||Az — y||? is small and
—Jy = ||[Fz — g||? is also small.

e Usually the objectives are competing.

We can make one smaller at the expense of making the
other larger.
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Multi-objective Least-squares

e Boundary of the region is called
optimal trade-off curve.

e.®
Points « along the boundary are

called Pareto optimal (for the
two objective functions J; and o
J2). =

Y

e Consider the choices of x : w(l), :L'(2), z(3).
— 23) is worse than z(2) based on both J1 and Jo.
—2(1) is better than z(2) in Jo but worse in Jj.
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Weighted-sum Objective

e To find Pareto optimal points (x on the optimal
trade-off curve), minimize the weighted-sum objective

J1 + puJy = [|[Az — y||? + p||Fz — g|?

e Parameter u > 0 gives the
relative weight (importance)
between J; and Js.

Ji

Least-squares and Minimum-norm Methods (©2003 M.C. Ramos
EE 212 UP EEE Department

Minimizing Weighted-sum Objective

Weighted-sum Objective

e Express the weighted-sum objective as an ordinary
least-squares objective.

Ji + pJy = ||[Az — y||® + pl|Fz — g|?

HL\/%E],Q” i L/y—,ﬂ‘ = Az — g
& 5

e Thus, assuming A is full rank,
x = (ATA)~"1ATy
= (ATA + pFTF)~1(ATy + uFTyg)
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e Points where the weighted sum
is constant, i.e.,

J1 + pd2 = «

correspond to the line with
slope —pu.

e Point 2(2) minimizes the weighted-sum for some pu and
gives us a point on the optimal trade-off curve.

To find other points on the curve, vary u from 0 to +oo
and minimize weighted-sum.
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Minimizing Weighted-sum Objective

e Example. Minimizing position m I
error and effort.

—mass is initially at rest.
—mass is subjected to a piecewise-constant force profile

x; i — 1<t < i, i=1,...,10
—y € R is the position at ¢ = 10. With A € RX10

1 1
y = Ax where A; = —-—[1 4+ 2(10 — 13)]
m 2
~J1 = (y — yg)? (square of final position error).
~Js = ||z||? (sum of the square of forces).
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Minimizing Weighted-sum Objective

e Weighted-sum objective : (Ax — 1) + pflz|?

Optimal = (for a certain p) : * = (ATA + pul)~1ATy,

Optimal trade-off curve

oLet yg = 1.

—left portion of the curve

oo
;’ﬂ7
corresponds to x — 0 (small o
effort). ES
. . 1
—right portion corresponds to -
.. ™ o2
Yy — yq (small position
error). T 5 7 25
) Jo = |lz|
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Regularized Least-squares

e Applications to estimation (inversion).
— Ax — 1y is sensor residual.
— prior information : « is small.
—model only accurate for x small.

—regularized solution trades off between sensor fit and
size of x.
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Regularized Least-squares

e Consider the case when FF = I and g = 0. The
objectives are

Ji = ||[Az = y||? and J» = ||z|?

eOptimal z : = = (ATA 4+ ul)~1(ATy).
The solution x is the regularized least-squares solution
of Ax =~ y.
—also termed as the Tychonov regularization.

—for p > 0, works for any A (no shape or rank
restriction).
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Nonlinear Least-squares

e Most physical systems (models) are nonlinear. We
linearize first to get our model into the Ax = y form.

e Nonlinear least-squares (NLLS) problem. Find x € R"
that minimizes
m
2 2
Ir@)* = > ()]
=1
where r : R" — R™.

—r(x) is a vector of residuals.
—reduces to (linear) least-squares if r(x) = Az — b.
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Nonlinear Least-squares

e Example. Estimate the position € R? from the range
measurments to the beacons at locations
bi,...,bmm € R2 without linearizing.

—we measure p; = ||z — b;|| + v; (v; is the unknown
sensor error, assumed small).
—NLLS estimate : choose £ to minimize

Y@ = > lpi = llz — bill]?
i=1 i=1

e Several ways to do this.

One way is using the Gauss-Newton method.
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Gauss-Newton Method for NLLS

Gauss-Newton Method for NLLS

e Gauss-Newton method.

given a starting guess for x.
repeat

—linearize r near current guess.

—new guess is linear least-squares solution using the
linearized r.

until convergence

e Other algorithms use different ways of guessing the next
iterate.
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e NLLS : Find £ € R"™ that minimizes

m

Ir@)? = > [ri(x)]?

=1

where r : R — R™.
e In general, very hard to get the exact solution.

e Many algorithms are available to compute optimal
solution (at least locally).
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In Detail, Gauss-Newton Method for NLLS

e Linearize r near current iterate z(¥).
r(r) = 'r(a:(k)) + Dr(ac(k))(:c — ac(k))

where Dr is the Jacobian of r(x) given by
(Dr)zg = 8ri/8mj.

e Rewrite the linear approximation as
r(w(k)) + Dr(w(k))(:c — w(k)) = Ak g — pk)
where
AK®) = Dr(zk))
b*) = Dr(z)z®) — p(2k)
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In Detail, Gauss-Newton Method for NLLS

e At the kth iteration, we approximate the NLLS problem
by the linear LS problem.

Ir@)I? & [|a®z — 5®)|

e The solution to the linearized LS problem updates the
iteration.

-1
(k1) _ [A(k)TA(m] AR T (k)

e Note that there are other ways of getting g(k+1),

(©2003 M.C. Ramos
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In Detail, Gauss-Newton Method for NLLS

In Detail, Gauss-Newton Method for NLLS

e Example. Navigation problem using 10 beacons.
—actual position : (3, 3)
—initial guess : (—2, —2)
—range measurement accuracy : 0.5

Beacon positions

T2
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In Detail, Gauss-Newton Method for NLLS

e The objective function ||7(x)||? looks like

Surface plot of ||r(z)||?

I1?

Contour plot of ||r(x)

.
. ,
P 2k (.

T2

s -4 -3 -2 -1 0
1 1

—for a linear least-squares problem, the objective would
be a quadratic bowl.
—”bumps” are due to the nonlinearity of r.
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e Using Gauss-Newton method, we find
— 2(k) converges to a minimum (in this case, globally).

—convergence takes a few steps (less than 10).

—final estimate is £ = (3.158,2.0424).
—estimation error || — z|| = 0.1636. (better than the
range accuracy).

Residual at each iteration Patterr'l of convergence

e

@I

k, iteration T
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Underdetermined Linear Equations

e Consider
y = Ax
where A € R™*" is fat (m < n).

—there are more variables than equations.

—x is underspecified,
i.e., many possible x’s give the same y.

e Assume that A is full rank (rank = m).

Each y € R'™ has a corresponding solution.
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Minimum-norm (Least-norm) Solution

Underdetermined Linear Equations

e A particular solution is
2y, = AT(AAT) Ty

which is a solution to y = Az that minimizes ||z||.

AAT is nonsingular since A is full rank.

e Suppose Ax = vy, thus A(x — xj,) = 0 and

T T AT T\—1
(m - mln) Lip = (33 - mln) A (AA ) Yy
= [A(z — z,)]TAT(AAT)™y
=0
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® The set of all solutions has the form
{z| Az = y} = {zp + 2|2z € N(A)}

where x) is any (particular) solution, i.e., Az, = y.

e Remarks.

— z characterizes the available solutions.
—solution has dim N (A) = n — m degrees of freedom.

—can choose z to satisfy secondary specification or
optimize based on other objective(s).
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Minimum-norm (Least-norm) Solution

e This implies that (x — =j,) L1 xj,. Thus,

lz1* = llz — @ + 2wl = llzml® + llz2 - 2w
> @il

i.e., xy, has the smallest norm among the possible

solutions.
{z | Az = y}

—orthogonality condition.

— projection interpretation.

T}, is the projection of 0 on the
solution set {x | Az = y}.
N(A) = {z| Az = 0}
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Minimum-norm (Least-norm) Solution

e AT(AAT)~1 is called the pseudoinverse of A (for a full
rank and fat A).

AT(AAT)=1 is a right inverse of A.

e Least-norm solution using QR factorization.
Decompose AT into AT = QR. Thus,

z1, = AT(AAT)"ly = QR Ty

where R™T = (R™HT and |21, = [|R”"y]-
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Least-norm Solution Using Lagrange Multipliers

Least-norm Solution Using Lagrange Multipliers

e Optimality conditions are
oL
ox

oL

— 22T Ma =0 -
& Y

= (A4z — y)T =

e First condition gives ¢ = — AT)/2.

Substituting into the second condition gives

A= —204ah)7ly

Thus, z = AT(AAT) 1y
(same as the previous least-norm solution).
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e The minimum-norm problem can be cast as an

optimization problem.
minimize Tz
subject to Ax = y

e Solve using Lagrange multipliers. Define the Lagrangian
function

L(x,A\) = xTe + )\T(Azl: — vy)

We want to minimize the Langrangian function with
respect to  and A.
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Least-norm Solution Using Lagrange Multipliers

e Example. Moving a mass. m

—mass is initially at rest.
—mass is subjected to a piecewise-constant force profile

z; &+ — 1<t <4i,i=1,...,10

—y1 € R is the position at ¢t = 10.
y2 € R is the final velocity at ¢t = 10.

where A € R2%10

—find the minimum norm force that moves the mass a
unit distance with zero final velocity, i.e., yq4 = (1,0).
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y = Ax



Least-norm Solution Using Lagrange Multipliers

force
e Solution is o
o
T T\—1 ch
x = AT (AA" )y =
“time
position velocity
N >
S o =
=i g
‘3 S w
Q o4 [
Q‘u » o
“time 7 " time'
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Relation to Regularized Least-squares

Relation to Regularized Least-squares

e Suppose A € R™X" is fat and full rank.
Define
Ji = Az — y]? Jy = ||z|?

Least-norm solution minimizes Jo with J; = 0.

e Optimal solution to weighted-sum objective problem

J1 + w2 = ||Az — y|* + wpllz|?

x, = (ATA + uI)~tATy
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Summary

e Fact. x;, — x;, aspu — 0,
i.e., regularized solution converges to the least-norm

solution as p — 0.
In matrix form, for a full rank and fat A, as u — 0,

(ATA + pn)~tAT 5 AT(AAT)—1
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e Multi-objective least-squares

e Regularized least-squares

e Nonlinear least-squares and Gauss-Newton method

e Minimum-norm solution of underdetermined equations

e Relation to regularized least-squares
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