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Today's Le
ture

�Multi-obje
tive least-squares

�Regularized least-squares

�Nonlinear least-squares and Gauss-Newton method

�Minimum-norm solution of underdetermined equations
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Multi-obje
tive Least-squares

�We dis
ussed minimizing the error norm using

least-squares.

In many problems, we have other goals; we have two (or

more) obje
tives.

We want to �nd x 2 R

n

su
h that

{ J

1

= kAx � yk

2

is small and

{ J

2

= kFx � gk

2

is also small.

�Usually the obje
tives are 
ompeting.

We 
an make one smaller at the expense of making the

other larger.
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Multi-obje
tive Least-squares

�Example. Left F = I and g = 0.

We want kAx � yk small and at the same time small x.

�Plot (J

2

; J

1

) for every x.

{ shaded area shows (J

2

; J

1

)

a
hieved by some x 2 R

n

.

{ 
lear area shows (J

2

; J

1

) not

a
hieved by any x 2 R

n

.
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Multi-obje
tive Least-squares

�Boundary of the region is 
alled

optimal trade-o� 
urve.

Points x along the boundary are


alled Pareto optimal (for the

two obje
tive fun
tions J

1

and

J

2

).
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�Consider the 
hoi
es of x : x

(1)

, x

(2)

, x

(3)

.

{ x

(3)

is worse than x

(2)

based on both J

1

and J

2

.

{ x

(1)

is better than x

(2)

in J

2

but worse in J

1

.
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Weighted-sum Obje
tive

�To �nd Pareto optimal points (x on the optimal

trade-o� 
urve), minimize the weighted-sum obje
tive

J

1

+ �J

2

= kAx � yk

2

+ �kFx � gk

2

�Parameter � � 0 gives the

relative weight (importan
e)

between J

1

and J

2

.
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Weighted-sum Obje
tive

�Points where the weighted sum

is 
onstant, i.e.,

J

1

+ �J

2

= �


orrespond to the line with

slope ��.
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J

1
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2

= �

�Point x

(2)

minimizes the weighted-sum for some � and

gives us a point on the optimal trade-o� 
urve.

To �nd other points on the 
urve, vary � from 0 to +1

and minimize weighted-sum.
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Minimizing Weighted-sum Obje
tive

�Express the weighted-sum obje
tive as an ordinary

least-squares obje
tive.

J

1

+ �J

2

= kAx � yk

2

+ �kFx � gk

2

=












�

A

p

�F

�

| {z }

~

A

x +

�

y

p

�g

�

| {z }

~y












2

= k

~

Ax � ~yk

2

�Thus, assuming

~

A is full rank,

x = (

~

A

T

~

A)

�1

~

A

T

~y

= (A

T

A + �F

T

F )

�1

(A

T

y + �F

T

g)
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Minimizing Weighted-sum Obje
tive

�Example. Minimizing position

error and e�ort.

PSfrag repla
ements

m

x

i

{mass is initially at rest.

{mass is subje
ted to a pie
ewise-
onstant for
e pro�le

x

i

i � 1 < t � i; i = 1; : : : ; 10

{ y 2 R is the position at t = 10. With A 2 R

1�10

,

y = Ax where A

i

=

1

m

�

1
2

[1 + 2(10 � i)℄

{ J

1

= (y � y

d

)

2

(square of �nal position error).

{ J

2

= kxk

2

(sum of the square of for
es).
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Minimizing Weighted-sum Obje
tive

�Weighted-sum obje
tive : (Ax � 1) + �kxk

2

Optimal x (for a 
ertain �) : x = (A

T

A + �I)

�1

A

T

y

d

�Let y

d

= 1.

{ left portion of the 
urve


orresponds to x ! 0 (small

e�ort).

{ right portion 
orresponds to

y ! y

d

(small position

error).
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Regularized Least-squares

�Consider the 
ase when F = I and g = 0. The

obje
tives are

J

1

= kAx � yk

2

and J

2

= kxk

2

�Optimal x : x = (A

T

A + �I)

�1

(A

T

y).

The solution x is the regularized least-squares solution

of Ax � y.

{ also termed as the Ty
honov regularization.

{ for � > 0, works for any A (no shape or rank

restri
tion).
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Regularized Least-squares

�Appli
ations to estimation (inversion).

{Ax � y is sensor residual.

{ prior information : x is small.

{model only a

urate for x small.

{ regularized solution trades o� between sensor �t and

size of x.
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Nonlinear Least-squares

�Most physi
al systems (models) are nonlinear. We

linearize �rst to get our model into the Ax = y form.

�Nonlinear least-squares (NLLS) problem. Find x 2 R

n

that minimizes

kr(x)k

2

=

m

X

i=1

[r

i

(x)℄

2

where r : R

n

! R

m

.

{ r(x) is a ve
tor of residuals.

{ redu
es to (linear) least-squares if r(x) = Ax � b.
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Nonlinear Least-squares

�Example. Estimate the position x 2 R

2

from the range

measurments to the bea
ons at lo
ations

b

1

; : : : ; b

m

2 R

2

without linearizing.

{ we measure �

i

= kx � b

i

k + v

i

(v

i

is the unknown

sensor error, assumed small).

{ NLLS estimate : 
hoose ^x to minimize

m

X

i=1

[r

i

(x)℄

2

=

m

X

i=1

[�

i

� kx � b

i

k℄

2

� Several ways to do this.

One way is using the Gauss-Newton method.
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Gauss-Newton Method for NLLS

�NLLS : Find x 2 R

n

that minimizes

kr(x)k

2

=

m

X

i=1

[r

i

(x)℄

2

where r : R

n

! R

m

.

� In general, very hard to get the exa
t solution.

�Many algorithms are available to 
ompute optimal

solution (at least lo
ally).
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Gauss-Newton Method for NLLS

�Gauss-Newton method.

given a starting guess for x.

repeat

{ linearize r near 
urrent guess.

{ new guess is linear least-squares solution using the

linearized r.

until 
onvergen
e

�Other algorithms use di�erent ways of guessing the next

iterate.
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In Detail, Gauss-Newton Method for NLLS

�Linearize r near 
urrent iterate x

(k)

.

r(x) � r(x

(k)

) + Dr(x

(k)

)(x � x

(k)

)

where Dr is the Ja
obian of r(x) given by

(Dr)

ij

= �r

i

=�x

j

.

�Rewrite the linear approximation as

r(x

(k)

) + Dr(x

(k)

)(x � x

(k)

) = A

(k)

x � b

(k)

where

A

(k)

= Dr(x

(k)

)

b

(k)

= Dr(x

(k)

)x

(k)

� r(x

(k)

)
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In Detail, Gauss-Newton Method for NLLS

�At the kth iteration, we approximate the NLLS problem

by the linear LS problem.

kr(x)k

2

�








A

(k)

x � b

(k)








2

�The solution to the linearized LS problem updates the

iteration.

x

(k+1)

=

�

A

(k)

T

A

(k)

�

�1

A

(k)

T

b

(k)

�Note that there are other ways of getting x

(k+1)

.
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In Detail, Gauss-Newton Method for NLLS

�Example. Navigation problem using 10 bea
ons.

{ a
tual position : (3; 3)

{ initial guess : (�2;�2)

{ range measurement a

ura
y : �0:5
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In Detail, Gauss-Newton Method for NLLS

�The obje
tive fun
tion kr(x)k

2

looks like
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{ for a linear least-squares problem, the obje
tive would

be a quadrati
 bowl.

{ "bumps" are due to the nonlinearity of r.
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In Detail, Gauss-Newton Method for NLLS

�Using Gauss-Newton method, we �nd

{ x

(k)


onverges to a minimum (in this 
ase, globally).

{ 
onvergen
e takes a few steps (less than 10).

{ �nal estimate is ^x = (3:158; 2:0424).

{ estimation error k^x � xk = 0:1636. (better than the

range a

ura
y).
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Underdetermined Linear Equations

�Consider

y = Ax

where A 2 R

m�n

is fat (m < n).

{ there are more variables than equations.

{ x is underspe
i�ed,

i.e., many possible x's give the same y.

�Assume that A is full rank (rank = m).

Ea
h y 2 R

m

has a 
orresponding solution.
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Underdetermined Linear Equations

�The set of all solutions has the form

fx j Ax = yg = fx

p

+ z j z 2 N (A)g

where x

p

is any (parti
ular) solution, i.e., Ax

p

= y.

�Remarks.

{ z 
hara
terizes the available solutions.

{ solution has dimN (A) = n � m degrees of freedom.

{ 
an 
hoose z to satisfy se
ondary spe
i�
ation or

optimize based on other obje
tive(s).
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Minimum-norm (Least-norm) Solution

�A parti
ular solution is

x

ln

= A

T

(AA

T

)

�1

y

whi
h is a solution to y = Ax that minimizes kxk.

AA

T

is nonsingular sin
e A is full rank.

� Suppose Ax = y, thus A(x � x

ln

) = 0 and

(x � x

ln

)

T

x

ln

= (x � x

ln

)

T

A

T

(AA

T

)

�1

y

= [A(x � x

ln

)℄

T

A

T

(AA

T

)

�1

y

= 0
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Minimum-norm (Least-norm) Solution

�This implies that (x � x

ln

) ? x

ln

. Thus,

kxk

2

= kx � x

ln

+ x

ln

k

2

= kx

ln

k

2

+ kx � x

ln

k

2

� kx

ln

k

2

i.e., x

ln

has the smallest norm among the possible

solutions.

{ orthogonality 
ondition.

x

ln

? N (A).

{ proje
tion interpretation.

x

ln

is the proje
tion of 0 on the

solution set fx j Ax = yg.
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Minimum-norm (Least-norm) Solution

�A

T

(AA

T

)

�1

is 
alled the pseudoinverse of A (for a full

rank and fat A).

A

T

(AA

T

)

�1

is a right inverse of A.

�Least-norm solution using QR fa
torization.

De
ompose A

T

into A

T

= QR. Thus,

x

ln

= A

T

(AA

T

)

�1

y = QR

�T

y

where R

�T

= (R

�1

)

T

and kx

ln

k = kR

�T

yk.
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Least-norm Solution Using Lagrange Multipliers

�The minimum-norm problem 
an be 
ast as an

optimization problem.

minimize x

T

x

subje
t to Ax = y

� Solve using Lagrange multipliers. De�ne the Lagrangian

fun
tion

L(x; �) = x

T

x + �

T

(Ax � y)

We want to minimize the Langrangian fun
tion with

respe
t to x and �.
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Least-norm Solution Using Lagrange Multipliers

�Optimality 
onditions are

�L

�x

= 2x

T

+ �

T

A = 0;

�L

��

= (Ax � y)

T

= 0

�First 
ondition gives x = �A

T

�=2.

Substituting into the se
ond 
ondition gives

� = � 2(AA

T

)

�1

y

Thus, x = A

T

(AA

T

)

�1

y

(same as the previous least-norm solution).
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Least-norm Solution Using Lagrange Multipliers

�Example. Moving a mass.
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i � 1 < t � i; i = 1; : : : ; 10

{ y

1

2 R is the position at t = 10.

y

2

2 R is the �nal velo
ity at t = 10.

y = Ax where A 2 R

2�10

{ �nd the minimum norm for
e that moves the mass a

unit distan
e with zero �nal velo
ity, i.e., y

d

= (1; 0).
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Least-norm Solution Using Lagrange Multipliers

� Solution is

x = A

T

(AA

T

)

�1

y
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Relation to Regularized Least-squares

� Suppose A 2 R

m�n

is fat and full rank.

De�ne

J

1

= kAx � yk

2

J

2

= kxk

2

Least-norm solution minimizes J

2

with J

1

= 0.

�Optimal solution to weighted-sum obje
tive problem

J

1

+ �J

2

= kAx � yk

2

+ �kxk

2

is

x

�

= (A

T

A + �I)

�1

A

T

y
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Relation to Regularized Least-squares

�Fa
t. x

�

! x

ln

as � ! 0,

i.e., regularized solution 
onverges to the least-norm

solution as � ! 0.

In matrix form, for a full rank and fat A, as � ! 0,

(A

T

A + �I)

�1

A

T

! A

T

(AA

T

)

�1
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Summary

�Multi-obje
tive least-squares

�Regularized least-squares

�Nonlinear least-squares and Gauss-Newton method

�Minimum-norm solution of underdetermined equations

�Relation to regularized least-squares
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