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Today’s Lecture

•Orthonormal vectors

•Gram-Schmidt procedure

•QR factorization

•Orthogonal decomposition induced by a matrix
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Orthonormal Set of Vectors

•A set of vectors u1, u2, . . . , uk ∈ Rn is

– normalized if ‖ui‖ = 1, i = 1, . . . , k.
(ui are called unit vectors of direction vectors)

– orthogonal if ui ⊥ uj for i 6= j.

– orthnormal if both normalized and orthogonal.

• In terms of U = [u1, u2 . . . uk], orthonormal means

UTU = Ik
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Orthonormal Set of Vectors

•Orthonormal vectors are independent.

Show this from α1u1 + α2u2 + . . . + αkuk = 0.

•Hence u1, u2, . . . uk is an orthornormal basis for

span(u1, u2, . . . uk) = R(U)
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Geometric Properties

• Suppose the columns of U = [u1, u2 . . . uk] are
orthonormal.

• If w = Uz, then ‖w‖ = ‖z‖.
–multiplication by U does not change the norm.

– the mapping w = Uz is isometric, i.e., it preserves
distances.

•To show this using matrices.

‖w‖2 = ‖Uz‖2 = (Uz)T (Uz) = zTUTUz

= zTz = ‖z‖2
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Geometric Properties

• Inner products are also preserved. 〈Uz,Uz̃〉 = 〈z, z̃〉.
If w = Uz and w̃ = Uz̃, then

〈w, w̃〉 = 〈Uz,Uz̃〉 = (Uz)T (Uz̃) = zTUTUz̃ = 〈z, z̃〉

• If norms and inner products are preserved
⇒ angles are also preserved.

∠(Uz,Uz̃) = ∠(z, z̃)

i.e., multiplication by U preserves inner products, angles
and distances.
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Orthonormal Basis for Rn

• Suppose u1, u2 . . . uk is an orthonormal basis for Rn.

Then, the matrix U = [u1, u2 . . . uk] is called
orthogonal.
It is a square matrix and satisfies UTU = I.

A matrix is never referred to as orthonormal.

• It follows that U−1 = UT , and hence also UUT = I,
i.e.,

n∑

i=1

uiu
T
i = I
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Expansion in Orthonormal Basis

• Suppose U is orthogonal, so x = UUTx, i.e.,

x =
n∑

i=1

(uT
i x)ui

–uT
i x is called the component of x in the direction ui.

– a = UTx resolves x into the vector of its ui
components.

– x = Ua reconstitutes x from its ui components.

– x = Ua =

n∑

i=1

aiui is called the (ui-) expansion of x.
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Expansion in Orthonormal Basis

•Geometric interpretation.
If U is orthogonal, then the transformation w = Uz

– preserves the norm of vectors, i.e., ‖Uz‖ = ‖z‖.
– preserves the angles between vectors, i.e.,
∠(Uz,Uz̃) = ∠(z, z̃).

•Examples.

– rotation about some axis.

– reflection through some plane.

• In fact, the converse is true.
If U is orthogonal, then the mapping w = Uz is either
a rotation or a reflection.
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Expansion in Orthonormal Basis

•Example. Rotation by θ in R2 is given by

y = Uθx, Uθ =

[
cos θ − sin θ
sin θ cos θ

]

e1 →
[
cos θ
sin θ

]

e2 →
[− sin θ

cos θ

]
x1

x2

e1

e2
[
cos θ
sin θ

][ − sin θ
cos θ

]

θ
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Expansion in Orthonormal Basis

•Example. Reflection across line x2 = x1 tan(θ/2) is
given by

y = Rθx, Rθ =

[
cos θ sin θ
sin θ − cos θ

]

e1 →
[
cos θ
sin θ

]

e2 →
[

sin θ
− cos θ

]
x1

x2

e1

e2

[
cos θ
sin θ

]

[
sin θ

− cos θ

]

θ
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Gram-Schmidt Procedure

•Given independent vectors a1, a2, . . . , ak ∈ Rn, find
orthonormal vectors q1, q2, . . . , qk such that

span(a1, a2, . . . , ar) = span(q1, q2, . . . , qr) for r ≤ k

•One can write qi recursively as follows.

– let q̃1 = a1 and normalize. q1 = q̃1/‖q̃1‖
– remove q1 component from a2.

– let q̃2 = a2 − (qT1 a2)q1 and normalize. q2 = q̃2/‖q̃2‖
– remove q1, q2 components from a3.

– let q̃3 = a3 − (qT1 a3)q1 − (qT2 a3)q2 and normalize.
q3 = q̃3/‖q̃3‖

– . . .
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Gram-Schmidt Procedure

•How does this operation work?

q1

q2

a2

q̃1 = a1

q̃2 = a2 − (qT
1
a2)q1

(qT
1
a2)q1

•For i = 1, 2, . . . , k, we have

a1 = r1iq1 + r2iq2 + . . . + riiqi

rij are easily obtained from the previous procedure.
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Gram-Schmidt Procedure

•Written in matrix form.

[a1 a2 . . . ak]︸ ︷︷ ︸

A

= [q1 q2 . . . qk]︸ ︷︷ ︸

Q







r11 r12 . . . r1k
0 r22 . . . r2k
... ... . . . ...
0 0 . . . rkk







︸ ︷︷ ︸

R

Concisely, A = QR where QTQ = Ik and R is upper
triangular, invertible.

R is full rank and nonsingular since

detR =

k∏

i=1

rii 6= 0
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Gram-Schmidt Procedure

•Note that rii 6= 0.

If this is not the case, ai can be written as a linear
combination of a1, a2, . . . , ai−1.

•Comments on A = QR.

– called the QR decomposition of A.

– never computed using the Gram-Schmidt procedure
due to propagation of numerical errors.

– columns of Q are orthonormal basis for R(A).
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Modified Gram-Schmidt Procedure

•What if a1, a2, . . . , ak are dependent?
We find q̃j = 0 for some j, which means aj is linearly
dependent on a1, a2, . . . , aj−1.

•Modify the algorithm. Skip aj and move on to aj+1
once q̃j = 0 is encountered.

r = 0;

for i = 1, . . . , k {

q̃ = ai −
r∑

j=1

qjq
T
j ai;

if q̃ 6= 0 { r = r + 1; qr = q̃/‖q̃‖; }
}
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Modified Gram-Schmidt Procedure

•This results in

– r = rank(A).

– set q1, q2, . . . , qr is an orthonormal basis for R(A).

– each ai is a linear combination of the previously
generated qj’s.

• In matrix form, A = QR
where

–QTQ = Ir and

–R ∈ Rr×k in upper staircase
form, full rank with rank r.

×
×

×
×

×

×

×
possibly
nonzero

entries

zero

entries

Orthonormal Vectors

EE 212

c©2003 M.C. Ramos

UP EEE Department



EE 212

Modified Gram-Schmidt Procedure

•Entries below the staircase are
zero.

Corner entries (marked with ×)
are nonzero.

×
×

×
×

×

×

×
possibly

nonzero
entries

zero
entries

•We can move the columns so that all × entries are
towards to the left.

A = Q[R̃ S]P

where

–QTQ = Ir
– R̃ ∈ Rr×r is a nonsingular upper triangular matrix.

–P ∈ Rk×k is a permutaion matrix
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Modified Gram-Schmidt Procedure

•Applications.

– yields an orthonormal basis for R(A).

– yields the factorization A = BC with B ∈ Rn×r

and C ∈ Rr×k, r = rank(A).

– gives a method for determining if
b ∈ span(a1, a2, . . . , ak).

apply the procedure to [a1 a2 . . . ak b].

– staircase pattern in R shows which columns of A are
dependent on the previous ones.
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Modified Gram-Schmidt Procedure

•Works incrementally.

One pass of the procedure yields the QR decomposition
of [a1 a2 . . . ap] for p = 1, . . . , k.

[a1 a2 . . . ap] = [q1 q2 . . . qs]Rp

where

– s = rank([a1 a2 . . . ap]) and

–Rp is the leading s × p submatrix of R.
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Full QR Factorization

•Using QR factorization on A, write A = Q1R1. Then,
we can also write

A = [Q1 Q2]

[
R1
0

]

where [Q1 Q2] is orthogonal, i.e., columns of

Q2 ∈ Rn×(n−r) are orthonormal and orthogonal to Q1.

•To find Q2.

– find any matrix Ã such that [A Ã] is full rank
(e.g., Ã = I).

– apply the modified Gram-Schmidt to [A Ã].
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Full QR Factorization

•Consequently,

–Q1 are orthonormal vectors from columns of A.

–Q2 are orthonormal vectors from columns of Ã.

•This means that any set of orthonormal vectors can be
extended to an orthonormal basis for Rn.

•Q1 and Q2 are called complementary since

– their ranges are orthogonal and

– together they span Rn.
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Orthogonal Decomposition Induced by A

•What is the use of the full QR decomposition?

AT = [RT
1 0]

[

QT
1

QT
2

]

Thus,

z ∈ N (AT ) ⇔ QT
1 z = 0 ⇔ z ∈ R(Q2)

i.e., columns of Q2 are an orthonormal basis for N (AT ).

•Recall that the columns of Q1 are an orthonormal basis
for R(A).
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Orthogonal Decomposition Induced by A

•Thus, we can say that R(A) and N (AT ) are
complementary subspaces.

– they are orthogonal. R(A) ⊥ N (AT ).

– together, they span Rn.

•Fancy notation for complementary subspaces.

R(A)
⊥
+ N (AT ) = Rn

Every y ∈ Rn can be written uniquiely as y = z + w
with z ∈ R(A) and w ∈ N (AT ).
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Least-squares Method

•Least-squares solution of overdetermined equations.

•Least-squares estimation

•Least-squares data fitting

•Least-squares solution via QR factorization

•Application to system identification
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Overdetermined Linear Equations

•Consider y = Ax where A ∈ Rm×n is tall, i.e.,
m > n.

– this is termed as overdetermined set of linear
equations. (more equations than unknowns).

– for most y, we cannot solve for x.

•Find an approximate solution to y = Ax.

– define residual or error r = Ax − y.

– find x = xls that minimizes ‖r‖.
xls is called the least-squares solution to y = Ax.
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Overdetermined Linear Equations

•Geometric interpretation.

Axls is a point in R(A) closest to y.
Axls is the projection of y on R(A).

Axls

y

r

R(A)
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Least-squares Solution

•Assume A is full rank and tall.

To find xls, take the square of the residual

‖r‖2 = xTATAx − 2yTAx + yTy

•Minimize with respect to x.

2xTATA − 2yTA = 0

This gives the normal equations,

ATAx = ATy
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Least-squares Solution

• Since A is full rank, ATA is nonsingular. This leads to
the well-known formula,

xls = (ATA)−1ATy

– xls is a linear function of y.

– xls = A−1y if A is square.

– xls solves y = Axls if y ∈ R(A).

•A† = (ATA)−1AT is called the pseudoinverse of A. A†
is a left inverse of A (full rank and tall)

A†A = (ATA)−1ATA = I
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Least-squares Solution

•Axls (projection of y onto R(A)) is linear.

Axls = A(ATA)−1ATy

The expression A(ATA)−1AT is called the projection
matrix.

•We now have an optimal residual (in the least-squares
sense).

r = Axls − y = [A(ATA)−1AT − I]y
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Least-squares Solution

•Orthogonality principle.

Residual r is orthogonal to R(A).

〈r, Az〉 = yT [A(ATA)−1AT − I]Az = 0

for all z ∈ Rn.

Axls

y

r

R(A)
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Least-squares Estimation

•Many applications can be categorized as either
inversion, estimation and resconstruction.

Many have the form

y = Ax + v

– x is what we want to estimate or reconstruct.

– y is the sensor measurement(s).

– v is an unknown noise or measurement error (assumed
small).

– ith row of A characterizes the ith sensor.
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Least-squares Estimation

•Least-squares approach. Choose x̂ (the estimate) such
that it minimizes

Ax̂ − y

i.e., the deviation between

– our actual observation y, and

–what we would observe if x = x̂ and there were no
noise, i.e., v = 0.

•The least-squares estimate is simply x̂ = (ATA)−1ATy.
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Least-squares Estimation

•Linear measurement with noise : y = Ax + v
with A full rank and tall.

•Consider a linear estimator of the form x̂ = By.

The estimator is called unbiased if x̂ = x whenever
v = 0, i.e., no estimation error when there is no noise.

Same as BA = I, i.e., B is the left inverse of A.

•Estimation error of an unbiased linear estimator is

x − x̂ = x − B(Ax + v) = − Bv

Then, we would like B to be ’small’ and also BA = I.
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Least-squares Estimation

•Recall our pseudoinverse definition.

A† = (ATA)−1AT is the smallest left inverse of A.

•Thus, for any B with BA = I, we have
∑

i,j

B2
ij ≥

∑

i,j

(

A
†
ij

)2

•Least-squares provides the best linear unbiased
estimator (BLUE).
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Least-squares Estimation

•Example. Navigation using range measurements from
distant beacons.

x

k1

k3

k2

k4

(p1, q1)

(p2, q2)

(p3, q3)

(p4, q4)

unknown

beacons
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Least-squares Estimation

•Beacons far from the unknown position x ∈ R2.

•Distance vector ρ ∈ R4 is a function of (x1, x2) ∈ R2.

ρi(x1, x2) =
√

(x1 − pi)
2 + (x2 − qi)

2

•Linearize around x0 = 0.

f(x) − f(x0) ≈ Df(x0)(x − x0)
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Least-squares Estimation

•Changes in range measurements y ∈ R4 (with noise v)

y =








−kT1
−kT2
−kT3
−kT4







x + v

where ki is a unit vector from the 0 to a beacon i.

•Problem. Determine x given y.
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Least-squares Estimation

•Let us put in some numbers.

x

k1

k3

k2

k4

(27, 0)

(16, 21)

(−27, 12)

(−9,−21)

unknown

beacons

Actual position x = (3, 5).
The measurements are y = (−2.48,−5.78, 1.26, 5.79).
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Least-squares Estimation

•Based on the
coordinates of the
beacons, we have

y =







−1 0
−0.61 −0.80
0.91 −0.41
0.39 0.92






x + v

•At the very least, we can figure out the position from
two measurements.

Take y1 and y2. The position can be found by
considering the first two rows of the linear equation.

x̂ = By =

[
[ −1 0
−0.61 −0.80

]−1 [
0 0
0 0

]
]

y

Least-squares Method

EE 212

c©2003 M.C. Ramos

UP EEE Department

EE 212

Least-squares Estimation

•Thus, the estimated position (relative to the origin) is

x̂ =

[ −1 0 0 0
0.76 −1.26 0 0

]

y =

[
2.48
5.38

]

This gives an error norm of ‖x̂ − x‖ = 0.64.

•Using the least-squares method.

x̂ = A†y =

[−0.45 −0.17 0.46 0.06
0.13 −0.44 −0.38 0.54

]

y =

[
3.02
4.86

]

The error norm is 0.14.

•Matrices B and A† are both left inverses of A.

The larger entries in B lead to a larger estimation error.
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Least-squares Estimation

•Example. Signal
estimation.

H(s) A/Du
w

y

• Input u is piecewise constant and changes every 1 sec.

u(t) = xj, j − 1 ≤ t < j, j = 1 . . . 10

•The input is passed through a filter with impulse
response h(t).

w(t) =

∫ t

0
h(t − τ )u(τ )dτ
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Least-squares Estimation

•The signal is then sampled at 10 Hz and 3-bit quantized

yi = Q[w(0.1i)]

where Q(·) is a 3-bit quantizing function.

•Problem. Estimate the input (x ∈ R10) from
y ∈ R100.
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Least-squares Estimation

• Illustration. Consider the following signals

0 2 4 6 8 10
−1

−0.5

0

0.5

1

0 2 4 6 8 10
−0.05

0

0.05

0.1

0.15

0 2 4 6 8 10
−1

−0.5

0

0.5

1

0 2 4 6 8 10
−1

−0.5

0

0.5

1

time(seconds)time(seconds)

u
(t
)

h
(t
)

w
(t
)

y
(t
)
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Least-squares Estimation

•Our linear equation is y = Ax + v.

•A ∈ R100×10 is given by

Aij =







∫ j

j−1
h(0.1i − τ )dτ j ≤ ceil(0.1i)

0 otherwise

• v ∈ R100 is the 3-bit quantization error.

vi = yi − Q[w(0.1i)] ⇒ |vi| ≤ 0.125
Least-squares Method
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Least-squares Estimation

•The least-squares estimate is

x̂ = (ATA)−1ATy

RMS error is

‖x̂ − x‖√
10

= 0.011
0 1 2 3 4 5 6 7 8 9 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time(seconds)

u
(t
)
a
n
d

û

input signal : actual and estimate

• If we did not filter the input the RMS error would have
been 0.035 (due to quantization errors).

We get lower RMS error if we filter the signal first
before sampling (and quantizing).
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Least-squares Data Fitting

•Given functions f1, . . . , fn : S → R (regressors or
basis functions).

Also given m data points or measurements, (si, gi),
i = 1, . . . ,m where si ∈ S, gi ∈ R and m ≫ n.

•Problem. Find the coefficients x1, . . . , xn ∈ R so that

x1f1(si) + . . . + xnfn(si) ≈ gi, i = 1, . . . ,m

i.e., find a linear combination of the regressors that fits
the data.
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Least-squares Data Fitting

•Least-squares fit.

Choose x to minimize the mean square error

m∑

i=1

[x1f1(si) + . . . + xnfn(si) − gi]
2

•Written in matrix form, the mean square error is

‖Ax − g‖2

where Aij = fj(si).
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Least-squares Data Fitting

•Assuming A is tall and full rank, the least-squares fit x
is given by

x = (ATA)−1ATg

and the corresponding function is

fls(s) = x1f1(s) + . . . + xnfn(s)

•Applications include

– interpolation, extrapolation, smoothing of data

– developing simple, approximate model of data
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Least-squares Polynomial Fitting

•Problem. Fit a polynomial of degree < n,

p(t) = a0 + a1t + . . . + an−1t
n−1

to the data (ti, yi), i = 1, . . . ,m.

•Basis functions are fj(t) = tj−1, j = 1, . . . , n.

•Matrix A is a Vandermonde
matrix which has the form
Aij = tj−1, i.e.,








1 t1 t21 . . . tn−1
1

1 t2 t22 . . . tn−1
2

... ... ... ...

1 tm t2m . . . tn−1
m







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Least-squares Polynomial Fitting

•Assuming tk 6= tl for k 6= l and m ≥ n, then we can
say that A full rank.

– we need to show that Aa = 0 ⇒ a = 0.

– if Aa = 0, then the polynomial
p(t) = a0 + a1t + . . . + an−1t

n−1 vanishes at m
points t1, . . . , tm.

– using the fundamental theorem of algebra, p(t) can
have no more than n − 1 zeros, so p(t) is identically
zero, and thus a = 0.

– columns of A are independent
⇒ A is full rank.
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Least-squares Polynomial Fitting

•Example. Find a polynomial approximation for
g(t) = exp(t).

– take m = 10 points between t = 0 and t = 1.

– least-squares fit for degrees 0, 1, 2 and 3.

– RMS errors are 0.5141, 0.0643, 0.0052 and 0.0003,
respectively.
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Least-squares from QR Decomposition

•Let A ∈ Rm×n tall and full rank.

Factor as A = QR with QTQ = In and R ∈ Rn×n

upper triangular and invertible.

•The pseudoinverse is

(ATA)−1AT = (RTQTQR)−1RTQT = R−1QT

Thus, the least-squares solution is xls = R−1QTy.

•The corresponding residual (of the optimal solution) is

‖y − Axls‖ = ‖(I − QQT )y‖ =

√
√
√
√‖y‖2 −

n∑

i=1

(qTi y)
2
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Least-squares from QR Decomposition

• In terms of the full QR decomposition A = [Q Q̃]

[
R
0

]

,

‖y − Axls‖ = ‖Q̃Q̃Ty‖ = ‖Q̃Ty‖ =

√
√
√
√

m−n∑

i=1

(q̃Ti y)
2

•What does this mean?

–QQTy is the part of y we can match by a linear
combination of ai’s.

– Q̃Q̃Ty is the part of y orthogonal to R(A).
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How Many Regressors Do You Need?

•Consider the set of least-squares problems

min
xi

∥
∥
∥
∥
∥
∥

p
∑

i=1

xiai − y

∥
∥
∥
∥
∥
∥

for p = 1, . . . , n and regressors a1, . . . , ap.

• Solve for xi’s.

– approximate y by a linear combination of a1, . . . , ap.

– project y onto span{a1, . . . , ap}.
– find xi’s, i.e., components of y on a1, . . . , ap.

– we get a better fit as p increases; optimal residual
decreases.
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How Many Regressors Do You Need?

• Solution for each p ≤ n is given by

xls = R−1
p QT

p y

where

–Rp is the leading p × p matrix of R.

–Qp = [q1 . . . qp] are the first p columns of Q.

•Thus, we can get the solution to the set of n
least-squares problem from one QR decomposition.
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How Many Regressors Do You Need?

•The residuals are given by

min
xi

∥
∥
∥
∥
∥
∥

p
∑

i=1

xiai − y

∥
∥
∥
∥
∥
∥

=

√
√
√
√‖y‖2 −

p
∑

i=1

(qTi y)
2

•How well does the linear
combination of a1, . . . , ap match
y for p = 0, . . . , n?

0 1 2 3 4

0

7

p

residual vs. p

‖y‖

minx1
‖x1a1 − y‖

minx1
‖(x1a1 + x2a2) − y‖
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Summary

•Orthonormal vectors.

–Gram-Schmidt procedure

–QR factorization

– orthogonal decomposition induced by a matrix

•Least-squares problems.

– least-squares solution of overdetermined equations.

– least-squares estimation

– least-squares data fitting

– least-squares solution via QR factorization

QR Decomposition and Least-squares Method
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