Linear Algebra Review Vector Spaces

e Vector space and subspaces e Concept of a vector space.
Consider the familiar spaces R', R2, ... R™.
e Independence, basis and dimension — R! is a 1-dimensional space, i.e., a line.

— R? is a 2-dimensional or a plane.

e Range, nullspace, inverse and rank Can we generalize operations performed in this spaces?

e Similarity transform, norms and inner product e A linear (vector) space consists of

—a set V.
e Eigenvectors and eigenvalues —avectorsum +:V X V — V.
—scalar multiplication : R X V — V.
e Jordan canonical form and Cayley-Hamilton theorem —a zero element : 0 € V.
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Vector Spaces Vector Spaces
e The following properties hold for a vector space. e Examples.
-z 4+ y =y + z, Va,y € V (commutative). -V = R™ with standard vector addition and scalar
—(x+y +z2z=2z+ (y + 2),Ve,y € V multiplication.
(associative). -V = {0} (where 0 € R").
-0+ ==z, Ve € V. -V3 = span(vy,va,...,v) where
—-Va € VI (—x) € Vsuchthat x + (—x) = 0. span(vy, v2,...,vk) = {a1v1 + ... + ogvg | a; € R}
—(aB)z = a(Bz),Va,B € R,Va& € V. -Vy4 = {z: Ry — R"| z is differentiable}.

vector sum is the sum of the functions, i.e.,

(x + 2)(t) = x=(t) + =z(t) and

scalar multiplication is defined by (az)(t) = ax(t).
Vs = {x € Vy:¢& = Ax}

(points in V5 are trajectories of the linear system

Tz = Ax).
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—a(x + y) = ar + ay,Via € R,V z,y € V.
—(a + B = ar + Bz, Va,8 € R,Vx € V.
1.2 = xz,Vax € V.



Vector Spaces

e A subspace of a vector space is a subset of a vector space
which is in itself a vector space.

—Vi1, Vo and V3 are subspaces of R"™.
— V5 is a subspace of Vy.

e For a subspace, we only need to check that
—vector addition holds and

—scalar multiplication holds.

Other properties follow and are automatically satisfied.
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Independent Vectors, Basis and Dimension

e Independence is also equivalent to saying
vector v;, ¢ € {1,...,k} cannot be expressed as a linear
combination of the other vectors

VlgeersVi_15Vi41y0 -+ Uk

e Linearly dependent vectors. One vector may be
expressed as a linear combination of the other vectors.

e A set of vectors {vy, va,.
space V if
—V1,V2y ..
—V]1yV2y e

Linear Algebra Review
EE 212

., UL} is a basis for a vector

, U span V, i.e., YV = span(vy,va,.

. ’Uk).
, U} are linearly independent.
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Independent Vectors, Basis and Dimension

e Vectors v1,v2,...,v, € R™ are independent iff

a1vp + agvy + + + agvg = 0
= a1 = ay = = =

—...—ak—o

e Saying vectors are independent is equivalent to

coefficients of ajv; + agve +

+ opvp = v are
uniquely determined, i.e.,
a1v] + oV + ... + OpUL
= Biv1 + Povz + + Brvk
implies that a1 = (31, as = B2, yop = P
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Independent Vectors, Basis and Dimension

e If you have a set of basis vectors, then every v € YV can
be uniquely expressed as

v = ovy + v + + apvg

e You can have many sets of basis vectors for a given
vector space V.

For a given vector space V, the number of vectors in any
basis is the same.

e Definition. The dimension of a vector space, dim V), is
the number of vectors in any basis.
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Nullspace and Range

e The nullspace of A € R™X" is defined as

N(A) = {z € R"| Az = 0}
—MN(A) is a set of vectors mapped to zero by y = Aw.
—MN(A) is a set of vectors othogonal to all rows of A.

e Given y = Ax
—if z € N(A), theny = A(z + =2).
—conversely, if y = Az, then x = x + z for some

z € N(A).
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Nullspace and Range

e Suppose z € N (A).

e The linear equation y = Ax can represent the output
due to input x.

—z is an input with no output result.
—x and * 4+ z have the same output.

e N (A) characterizes the freedom of input choice that will
result in a given output.
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Nullspace and Range

e A zero nullspace. N'(4) = {0} &

—x can always be uniquely determined from y = Ax
(i.e., the linear map y = Ax does not lose
information).

—columns of A are independent (hence, a basis for their
span).
— A has a left inverse, i.e., the is a matrix

B € R™ ™ such that BA = 1.
—det(ATA) # o.
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Nullspace and Range

e The linear equation y = Ax can represent measurement
of x.
—z will not be detected by sensors, i.e., you get zero
sensor readings.
—x and z + =z are indistinguishable from sensors :

Ax = A(xz + =z).

e N (A) characterizes ambiguity in = from y = Awx.
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Nullspace and Range

e The range of A € R™*" is defined as
R(A) = {Az |z € R"} C R™

e This can be interpreted as
—R(A) is the set of vectors that can be ’reached’ by the
mapping y = Ax.
—R(A) is equivalent to the span of columns of A.

—TR(A) is the set of vectors y such that Ax = y has a
solution.

e Also called as the column space of A.
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Nullspace and Range

Nullspace and Range

e Suppose v € R(A) and w ¢ R(A).

e Let y = Aux represent a measurement of x.
—4y = v is a possible or consistent sensor signal.
—y = w is impossible or inconsistent; sensors have

failed or model is wrong.

e Let y = Ax represent an output resulting from input x.
—y = v is a possible output.
—y = w cannot be an output or result.

R(A) characterizes the possible results or outputs.
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e A is called onto if R(A) = R™ &
—Ax = 1y can be solved in x for any y.
—the columns of A span R™.

— A has a right inverse, i.e., there is a matrix
B € R™ ™ such that AB = 1I.

—the rows of A are independent.

—det(AAT) # o.
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Inverse and Rank of a Matrix

e A € R™ " js invertible or nonsingular if det A # 0.

e Equivalently.

—the columns of A are a basis for R".
—the rows of A are a basis for R".
—y = Ax has a unique solution x for every y € R".
— A has a (left and right) inverse denoted by
A7l € R™7" with A—14 = 44~1 = .
~-N(A) = {o0}.
-R(A) = R™
—~det(ATA) = det(AAT) # o.
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Inverse and Rank of a Matrix Inverse and Rank of a Matrix

e Definition. Rank of A € R™X" as e Interpretation of rank(A) + dimAN(A) = n.
rank(A) = dimR(A)
e The rank(A) is the dimension of the set that can be
reached by the mapping y = Ax.

e Useful facts.

—rank(A) = rank(AT).

—rank(A) is the maximum number of independent

columns of A.

e The dim N (A) is the dimension of the subset of all
possible x that gets mapped to zero by y = Ax.

—rank(A) is the maximum number of independent rows

of A. e Conservation of dimension. Each dimension of input
—rank(A) < min(m,n). either appears at the output or gets mapped to zero.
—rank(A) + dimN(A) = n.
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Inverse and Rank of a Matrix Inverse and Rank of a Matrix
e Definition. Full rank. For A € R™*™ we always have e Interpretation of rank in coding.
rank(A) < min(m,n). Rank product. rank(BC) < min{rank(B),rank(C)}.

A is full rank if rank(A) = min(m,n).

e Full rank square matrices are nonsingular. e Thus, if A = BC with B € R™*",C € R"*", then
rank(A) < 7.

e For fat matrices (n > m), full rank means that the

rows are independent.
e Conversely, if rank(A) = r then A € R™*"™ can be

factored as A = BC with B € R™X", C € R"*".
e For tall matrices (m > n), full rank means that the

columns are independent.
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Inverse and Rank of a Matrix

e Transmission channel.
rank(A) lines

T—f > A —F/>=Y T T ) C = B |—/»=Y
n m n T m
rank(A) = r is the minimum number of lines needed to

faithfully reconstruct y from x.

e Impact in computing y = Axz.

—directly : you need to perform mn operations
—compute z = Cc first, then y = Bz :
rn + mr = (m 4 n)r operations.

Significant savings if r < min{m,n}.
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Coordinate Transformation

Coordinate Transformation

0
e Standard basis vectors in R™ : i
(613627”'7611) 0
e; = 1
e; has a 1 in the ¢2th component 0
and zeros in the rest. :
0

e Thus, we can write any x € R" as
r = x1e1 + x2e9 + ... 4+ xTpep

The coefficients x; are the elements (coordinates) of = in
the standard basis.
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Coordinate Transformation

o If (t1,t2,...,tn) is another basis for R"™, we may write

xr = X1ty + xotes + ... + Tptp

where x; are the coordinates of x in the new basis.

eDefine T = [t; t3 ... tp] such that x = Tx. We have
g = T o
—T is nonsingular since t; are a basis.

—T~1 transforms the standard basis coordinates of x
into the t; coordinates.
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e Consider the linear transformation
y = Az, A € R"™"

e Express y and x in terms of t{,%2,...,%ty.
x = Tz, y = Ty
Thus,
g = (T71AT)&

~ A — T 1AT is called a similarity transformation.

—a similarity transformation T' expresses the linear
transformation y = Ax in t{,%t5,...,%t, coordinates.

Linear Algebra Review (©2003 M.C. Ramos
EE 212 UP EEE Department



Euclidean Norm Euclidean Norm

eFor x € R"™ we define the (Euclidean) norm as e The distance of the vector from the origin is also given
—— 2 _ by Il
lz|| = ¥ + 25 + ... + x5 = Va'zx

||z|| is the length of the vector.
e The distance between vectors is

dist(z,y) = |z — yl|
e Properties of the norm.
—homogeneity : ||azx| = |al||z]|] & z
—triangle inequality : [z + y|| < [l=|| + ||yl
—nonnegativity : ||z|| > 0 . v
—definiteness : ||z|| = 0 & = = 0.
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Inner Product Inner Product

e The inner product of two vectors z,y € R™ is defined e Parallelogram equality.
as 2 2 2 2
T le + ylI* + llz — ylI* = 2(l=[" + [lyll*)

(x,y) = zy1 + @2y2 + ... + Tpyn = T Y

e Properties of the inner product.

—(aa:,y) = a<w7y>
—(z + y,2) = (z,y) + (y,2)

Yy
—(z,y) = (y,x)
—(z,xz) > 0
—(z,z) = 0 & = =0
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Inner Product

e Cauchy-Schwartz inequality. For any =,y € R",

T
lz"yl < llzllllyll

Note that this only holds for the 2-norm.

e Angle between vectors in R™.

T € r
€T \
0 = L(z,y) = e '\
lz[[llyll
Thus,
T
'y = |z|llyllcosd R
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Inner Product

Inner Product

e Example. :c’-lryl < 0 and mgyz > 0.

| T1 R" T2 :
1 1
l 1
! Y1 1
TR - .

ziy < 0 xlys > 0

vy s

e Halfspace with outward normal
vector y and boundary passing
through the origin. B

{z | 2Ty < 0}

halfspace

origin
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e Special cases and the meaning of zTy.

—a and y are aligned.

0 =0= zly = ||yl

ifr # 0,y = ax for somea > 0
—x and y are in opposite directions.

0 = = aly = — |||yl

ifx # 0,y = — ax for some a > 0

—x and y are orthogonal (z L y).
0 = +7/2 = 2Ty =0

—xTy > 0 means /(z,y) is acute.
—zTy < 0 means Z(x,y) is obtuse.

Lincar Algebra Review ©2003 M.C. Ramos
EE 212 UP EEE Department

Eigenvectors and Eigenvalues

e Definition. A € C is an eigenvalue of A € R™X" if
XA) = det(AI — A) =0

o If \ is an eigenvalue &
there exists a nonzero v € C™ such that
(AI — A)v =0, i.e.,
Av = v
Such a v is termed an eigenvector of A associated with
the eigenvalue .
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Eigenvectors and Eigenvalues

e If X\ is an eigenvalue &

there exists a nonzero w € C" such that
wl(AI = A) =0, ie.,

wlA = awT

Such a w is called a left eigenvector of A.

e Conjugate symmetry. If v € C" is an eigenvector
associated with A € C, then v is the eigenvector
associated with .

Av = dv = Av = v = AT = A\
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Eigenvectors and Eigenvalues

Eigenvectors and Eigenvalues

e Diagonalization.

Suppose v1,v2,...,v, are linearly independent
eigenvectors of A € R"*X"™,

Av; = N\v;, 1 = 1,...,n

e We can express this as

Afvy vy ... vp] = [v1 v2 ... vy] .
An
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e Scaling. If v is an eigenvector, the effect of A on v is
similar to scaling v by A.

-A € R, A > 0.

v and Av point in the same A
direction. - o
_A E R, A < O. T1
v and Av point in opposite
directions. >

-A € R, |\ < 1
v is larger than Awv.

-A € R, Al > 1. 4 x5
v is smaller than Awv.

R"
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Eigenvectors and Eigenvalues

e Define T = [vy v2 ... vp] and
A = diag(A1,A2,...,An), so that

AT = TA

e Thus,
T 1AT = A

T~ exists since vy, va, ..., vy are linearly independent.

o T is a similarity transformation that diagonalizes A.
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Eigenvectors and Eigenvalues Eigenvectors and Eigenvalues

e Converse. If there exist a vector T = [v] v2 ... vp] e We can also use the left eigenvectors for diagonalization.
such that Rewrite T-1AT = AasT 1A = AT L
T 1AT = A = diag(A1, A2,..., A\n) T T
. 1 1
then AT = TA, i.e., Assigning, wr{, wg, ceey w;‘g 'wg A= A wg
. g as the rows of T—! we get : o :
Av; = N\v;, T = 1,...,n T T
. 4 w,, w;,
such that vy,vs,...,v, are linearly independent
eigenvectors of A.
e Thus, 'w;-fA = Aisz.
e Briefly, A is diagonalizable if The rows of T~ are left eigenvectors. They are also
. 1 o normalized so that
—there exists T such that T7*AT = A is diagonal. T
— A has a set of linearly independent eigenvectors. wivj = 0
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Eigenvectors and Eigenvalues Eigenvectors and Eigenvalues
e Definition. If A is not diagonalizable, it is called 00] [v
defective. e Thus, Av = 01| |vy| — 0
and the eigenvectors have the form
-
e Take for example — 0 where v1 # 0
A = [g (1)1 = A does not have two linearly independent
eigenvectors.
The characteristic polynomial is X (s) = s2. = A is not diagonalizable.
= A = 0 is the only eigenvalue.
Eigenvectors satisfy Av = 0v = 0. e If A has distinct eigenvalues, i.e., A; # Aj fort # j,

then A is diagonalizable.
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Jordan Canonical Form

Jordan Canonical Form

e The diagonal form is important in investigating how a
control system behaves.

What if A cannot be diagonalized?

Alternatively, we can use the Jordan canonical form.

e Any matrix A € R"™X"™ can be put in the Jordan
canonical form by the a similarity transformation.

Ji
T lAT = y
Jq

where J; is a Jordan block of size n; with eigenvalue A;.
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Jordan Canonical Form

e A Jordan block J; of size X e
n; with eigenvalue ;. Ji |

e Properties of the Jordan form.

—J is upper diagonal.
—J is the special case of N Jordan blocks of size
n; = 1.
—Jordan form is unique (up to the permutations of the

blocks).
—we can have multiple blocks with the same eigenvalue.

Lincar Algebra Review ©2003 M.C. Ramos
EE 212 UP EEE Department

Jordan Canonical Form

e The Jordan form is useful for investigating system
concepts.

However, it is never used for numerical computations.

e How do we determine the Jordan canonical form.

Given

X(A) = det(AI — A) = (s — AD)™...(s — Ag)™

with distinct eigenvalues.

= n; = 1 = A is diagonalizable.
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e The dimension of N'(AI — A) is the number of Jordan
blocks associated with eigenvalue A.

e In general,

dimNAI — A)F = > min{k,n;}
A = A

Using k = 1,2,... and dimN(AI — A)*, we can
deduce the sizes of the Jordan blocks associated with .
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Jordan Canonical Form

e Suppose T 1AT = J = diag(Jy,..., Jq)-
Express T as

T =TTy ... Ty

where T; € Cpxn, are the columns of T' associated with
ith Jordan block J;.

e Expanding
A[T1 T2 . e Tq] = [Tl T2 .o Tq] . diag(Jl, ooy Jq)

we can write AT, = T;J;.
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Cayley-Hamilton Theorem

e Useful for deriving solutions to linear equations.

oIf p(s) = a9 + a1s + ... + ags® is a polynomial and
A € R "™, we define

p(A) = apl + a1A + ... + akAk

e Cayley-Hamilton theorem.
For any A € R"*"™, we have X(A) = 0, where
X(s) = det(sI — A).
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Jordan Canonical Form

eLet T; = [v;1 v;2 ... Vip,yl, then we have
Avi = Ajvp

i.e., the first column of each Tj is an eigenvector
associated with eigenvalue \;.

efkorj; = 1,...,n; — 1,
Avij = 51 + Ajvij
Vectors v;1, ..., v;,, are called generalized eigenvectors.
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Cayley-Hamilton Theorem

e Example.

13

For A = l42

] , we have

X(s) = det(sI — A) = s2 — 35 — 10

Thus,
X(A) = A2 — 3A — 101
13 9 13
- [12 16} B 3[42} j- 101
=0
e



Cayley-Hamilton Theorem

Cayley-Hamilton Theorem

e Corollary. For every p € Z,, we have
AP ¢ span{I, A, A% ..., A" 1}

Additionally, if A is nonsingular, the above holds for
p € Z.

e Every power of A can be expressed as a linear
combination of I, A, A2,..., A" L,
Proof. Divide sP by X (s) to get
sP r(s)

2@ = 1O+ gy = = a@FE
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e Where ¢(s) is the quotient polynomial and
r(s) = ag + a1s + + an_lsn_l is the
remainder polynomial.

e Then,
AP = g(A)X(A) + r(A)
=r(A)

=agl + 1A + + an_lAn_l

e You could also show this by taking X(A) = 0 and
expressing higher powers of A in terms of lower powers
of A.
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eFor p = — 1, rewrite Cayley-Hamilton theorem
X(A) = A" + a1 A" + ... 4+ agl =0

as
_ An—1
ag ag ag

e Note : since A is nonsigular, ag # 0. Thus,
Al = 2, Ly
ag ag ag

i.e., the inverse of A may be expressed as a linear
combination of I, A, A2,..., A" L,
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e First assume A is diagonalizable, i.e., T"1AT = A.

X(s) = (s — A)(s — A2)...(s — Ap)

e Since X(A) = X(TAT™!) = TX(A)T L,
it is sufficient to show X(A) = 0.

XA)=A — MDA — X2D)...(A — A I)
= diag(0,A2 — A1y...,An — A1)
..o.diag(A1 — ApyeeosAn—1 — An,0)
=0
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Proof of Cayley-Hamilton Theorem Summary

e For the general case, use the Jordan form. e Linear algebra is the main tool for dealing with linear
With T-1AT = J, we get systems.

X(s) = (5 — A)™M(s — X2)"2...(s — Ap)"™d e Definitions.

—vector space and subspace

— Independence, basis and dimension
e It is sufficient to show X (J;) = 0. —Range, nullspace, inverse and rank
— Similarity transform, norms and inner product
010...
y e y h— nl o o o o o o ARy y h— nq
X () = (Ji A1) UG (J; Aql) e Important concepts.

T I — Eigenvectors and eigenvalues
(Ji if) —Jordan canonical form and Cayley-Hamilton theorem

I
o
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