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Linear Algebra Review

•Vector space and subspaces

• Independence, basis and dimension

•Range, nullspace, inverse and rank

• Similarity transform, norms and inner product

•Eigenvectors and eigenvalues

• Jordan canonical form and Cayley-Hamilton theorem
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Vector Spaces

•Concept of a vector space.

Consider the familiar spaces R1, R2, . . . Rn.

–R1 is a 1-dimensional space, i.e., a line.

–R2 is a 2-dimensional or a plane.

Can we generalize operations performed in this spaces?

•A linear (vector) space consists of

– a set V.

– a vector sum + : V × V → V.

– scalar multiplication : R × V → V.

– a zero element : 0 ∈ V.
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Vector Spaces

•The following properties hold for a vector space.

– x + y = y + x, ∀ x, y ∈ V (commutative).

– (x + y) + z = x + (y + z), ∀ x, y ∈ V
(associative).

– 0 + x = x, ∀ x ∈ V.

– ∀ x ∈ V ∃ (−x) ∈ V such that x + (−x) = 0.

– (αβ)x = α(βx), ∀ α, β ∈ R, ∀ x ∈ V.

–α(x + y) = αx + αy, ∀ iα ∈ R, ∀ x, y ∈ V.

– (α + β)x = αx + βx, ∀ α, β ∈ R, ∀ x ∈ V.

– 1 · x = x, ∀ x ∈ V.
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Vector Spaces

•Examples.

–V1 = Rn with standard vector addition and scalar
multiplication.

–V2 = {0} (where 0 ∈ Rn).

–V3 = span(v1, v2, . . . , vk) where
span(v1, v2, . . . , vk) = {α1v1 + . . . + αkvk | αi ∈ R}.

–V4 = {x : R+ → Rn | x is differentiable}.
vector sum is the sum of the functions, i.e.,
(x + z)(t) = x(t) + z(t) and
scalar multiplication is defined by (αx)(t) = αx(t).

–V5 = {x ∈ V4 : ẋ = Ax}
(points in V5 are trajectories of the linear system
ẋ = Ax).
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Vector Spaces

•A subspace of a vector space is a subset of a vector space
which is in itself a vector space.

–V1, V2 and V3 are subspaces of Rn.

–V5 is a subspace of V4.

•For a subspace, we only need to check that

– vector addition holds and

– scalar multiplication holds.

Other properties follow and are automatically satisfied.
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Independent Vectors, Basis and Dimension

•Vectors v1, v2, . . . , vk ∈ Rn are independent iff

α1v1 + α2v2 + . . . + + αkvk = 0

⇒ α1 = α2 = . . . = αk = 0

• Saying vectors are independent is equivalent to

coefficients of α1v1 + α2v2 + . . . + αkvk = v are
uniquely determined, i.e.,

α1v1 + α2v2 + . . . + αkvk
= β1v1 + β2v2 + . . . + βkvk

implies that α1 = β1, α2 = β2, . . . , αk = βk.
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Independent Vectors, Basis and Dimension

• Independence is also equivalent to saying

vector vi, i ∈ {1, . . . , k} cannot be expressed as a linear
combination of the other vectors
v1, . . . , vi−1, vi+1, . . . , vk.

•Linearly dependent vectors. One vector may be
expressed as a linear combination of the other vectors.

•A set of vectors {v1, v2, . . . , vk} is a basis for a vector
space V if

– v1, v2, . . . , vk span V, i.e., V = span(v1, v2, . . . , vk).

– v1, v2, . . . , vk are linearly independent.
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Independent Vectors, Basis and Dimension

• If you have a set of basis vectors, then every v ∈ V can
be uniquely expressed as

v = α1v1 + α2v2 + . . . + αkvk

•You can have many sets of basis vectors for a given
vector space V.

For a given vector space V, the number of vectors in any
basis is the same.

•Definition. The dimension of a vector space, dimV, is
the number of vectors in any basis.
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Nullspace and Range

•The nullspace of A ∈ Rm×n is defined as

N (A) = {x ∈ Rn | Ax = 0}

–N (A) is a set of vectors mapped to zero by y = Ax.

–N (A) is a set of vectors othogonal to all rows of A.

•Given y = Ax

– if z ∈ N (A), then y = A(x + z).

– conversely, if y = Ax̃, then x̃ = x + z for some
z ∈ N (A).
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Nullspace and Range

•A zero nullspace. N (A) = {0} ⇔

– x can always be uniquely determined from y = Ax
(i.e., the linear map y = Ax does not lose
information).

– columns of A are independent (hence, a basis for their
span).

–A has a left inverse, i.e., the is a matrix

B ∈ Rn×m such that BA = I.

– det(ATA) 6= 0.

Linear Algebra Review

EE 212

c©2003 M.C. Ramos

UP EEE Department

EE 212

Nullspace and Range

• Suppose z ∈ N (A).

•The linear equation y = Ax can represent the output
due to input x.

– z is an input with no output result.

– x and x + z have the same output.

•N (A) characterizes the freedom of input choice that will
result in a given output.
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Nullspace and Range

•The linear equation y = Ax can represent measurement
of x.

– z will not be detected by sensors, i.e., you get zero
sensor readings.

– x and z + z are indistinguishable from sensors :
Ax = A(x + z).

•N (A) characterizes ambiguity in x from y = Ax.
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Nullspace and Range

•The range of A ∈ Rm×n is defined as

R(A) = {Ax | x ∈ Rn} ⊆ Rm

•This can be interpreted as

–R(A) is the set of vectors that can be ’reached’ by the
mapping y = Ax.

–R(A) is equivalent to the span of columns of A.

–R(A) is the set of vectors y such that Ax = y has a
solution.

•Also called as the column space of A.
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Nullspace and Range

•A is called onto if R(A) = Rm ⇔

–Ax = y can be solved in x for any y.

– the columns of A span Rm.

–A has a right inverse, i.e., there is a matrix
B ∈ Rn×m such that AB = I.

– the rows of A are independent.

– det(AAT ) 6= 0.
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Nullspace and Range

• Suppose v ∈ R(A) and w /∈ R(A).

•Let y = Ax represent a measurement of x.

– y = v is a possible or consistent sensor signal.

– y = w is impossible or inconsistent; sensors have
failed or model is wrong.

•Let y = Ax represent an output resulting from input x.

– y = v is a possible output.

– y = w cannot be an output or result.

R(A) characterizes the possible results or outputs.
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Inverse and Rank of a Matrix

•A ∈ Rn×n is invertible or nonsingular if detA 6= 0.

•Equivalently.

– the columns of A are a basis for Rn.

– the rows of A are a basis for Rn.

– y = Ax has a unique solution x for every y ∈ Rn.

–A has a (left and right) inverse denoted by
A−1 ∈ Rn×n, with A−1A = AA−1 = I.

–N (A) = {0}.

–R(A) = Rn.

– det(ATA) = det(AAT ) 6= 0.
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Inverse and Rank of a Matrix

•Definition. Rank of A ∈ Rm×n as

rank(A) = dimR(A)

•Useful facts.

– rank(A) = rank(AT ).

– rank(A) is the maximum number of independent
columns of A.

– rank(A) is the maximum number of independent rows
of A.

– rank(A) ≤ min(m,n).

– rank(A) + dimN (A) = n.
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Inverse and Rank of a Matrix

• Interpretation of rank(A) + dimN (A) = n.

•The rank(A) is the dimension of the set that can be
reached by the mapping y = Ax.

•The dimN (A) is the dimension of the subset of all
possible x that gets mapped to zero by y = Ax.

•Conservation of dimension. Each dimension of input
either appears at the output or gets mapped to zero.
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Inverse and Rank of a Matrix

•Definition. Full rank. For A ∈ Rm×n we always have
rank(A) ≤ min(m,n).

A is full rank if rank(A) = min(m,n).

•Full rank square matrices are nonsingular.

•For fat matrices (n > m), full rank means that the
rows are independent.

•For tall matrices (m > n), full rank means that the
columns are independent.
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Inverse and Rank of a Matrix

• Interpretation of rank in coding.

Rank product. rank(BC) ≤ min{rank(B), rank(C)}.

•Thus, if A = BC with B ∈ Rm×r, C ∈ Rr×n, then
rank(A) ≤ r.

•Conversely, if rank(A) = r then A ∈ Rm×n can be
factored as A = BC with B ∈ Rm×r, C ∈ Rr×n.
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Inverse and Rank of a Matrix

•Transmission channel.

xx yy

nn r mm
A BC

rank(A) lines

⇒

rank(A) = r is the minimum number of lines needed to
faithfully reconstruct y from x.

• Impact in computing y = Ax.

– directly : you need to perform mn operations

– compute z = Cx first, then y = Bz :
rn + mr = (m + n)r operations.

Significant savings if r ≪ min{m,n}.
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Coordinate Transformation

• Standard basis vectors in Rn :
(e1, e2, . . . , en)

ei has a 1 in the ith component
and zeros in the rest.

ei =













0
...
0
1
0
...
0













•Thus, we can write any x ∈ Rn as

x = x1e1 + x2e2 + . . . + xnen

The coefficients xi are the elements (coordinates) of x in
the standard basis.
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Coordinate Transformation

• If (t1, t2, . . . , tn) is another basis for Rn, we may write

x = x̃1t1 + x̃2t2 + . . . + x̃ntn

where x̃i are the coordinates of x in the new basis.

•Define T = [t1 t2 . . . tn] such that x = T x̃. We have

x̃ = T−1x

– T is nonsingular since ti are a basis.

– T−1 transforms the standard basis coordinates of x
into the ti coordinates.
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Coordinate Transformation

•Consider the linear transformation

y = Ax, A ∈ Rn×n

•Express y and x in terms of t1, t2, . . . , tn.

x = T x̃, y = T ỹ

Thus,

ỹ = (T−1AT )x̃

–A → T−1AT is called a similarity transformation.

– a similarity transformation T expresses the linear
transformation y = Ax in t1, t2, . . . , tn coordinates.
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Euclidean Norm

•For x ∈ Rn we define the (Euclidean) norm as

‖x‖ =
√

x2
1 + x2

2 + . . . + x2
n =

√

xTx

‖x‖ is the length of the vector.

•Properties of the norm.

– homogeneity : ‖αx‖ = |α|‖x‖

– triangle inequality : ‖x + y‖ ≤ ‖x‖ + ‖y‖

– nonnegativity : ‖x‖ ≥ 0

– definiteness : ‖x‖ = 0 ⇔ x = 0.
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Euclidean Norm

•The distance of the vector from the origin is also given
by ‖x‖.

•The distance between vectors is

dist(x, y) = ‖x − y‖

x

y

z

Rn
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Inner Product

•The inner product of two vectors x, y ∈ Rn is defined
as

〈x, y〉 = x1y1 + x2y2 + . . . + xnyn = xTy

•Properties of the inner product.

– 〈αx, y〉 = α〈x, y〉

– 〈x + y, z〉 = 〈x, y〉 + 〈y, z〉

– 〈x, y〉 = 〈y, x〉

– 〈x, x〉 ≥ 0

– 〈x, x〉 = 0 ⇔ x = 0
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Inner Product

•Parallelogram equality.

‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2)

x

y

x − y

x + y

Rn
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Inner Product

•Cauchy-Schwartz inequality. For any x, y ∈ Rn,

|xTy| ≤ ‖x‖‖y‖

Note that this only holds for the 2-norm.

•Angle between vectors in Rn.

θ = ∠(x, y) = cos−1 xTy

‖x‖‖y‖

Thus,

xTy = ‖x‖‖y‖cosθ

x

y

Rn

θ
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Inner Product

• Special cases and the meaning of xTy.

– x and y are aligned.
θ = 0 ⇒ xTy = ‖x‖‖y‖.
if x 6= 0, y = αx for some α ≥ 0

– x and y are in opposite directions.
θ = π ⇒ xTy = − ‖x‖‖y‖.
if x 6= 0, y = − αx for some α ≥ 0

– x and y are orthogonal (x ⊥ y).
θ = ± π/2 ⇒ xTy = 0

– xTy > 0 means ∠(x, y) is acute.

– xTy < 0 means ∠(x, y) is obtuse.
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Inner Product

•Example. xT
1 y1 < 0 and xT

2 y2 > 0.

x1

y1

x2

y2

Rn

xT
1
y1 < 0 xT

2
y2 > 0

•Halfspace with outward normal
vector y and boundary passing
through the origin.

{x | xTy ≤ 0}

origin

y

halfspace

Rn
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Eigenvectors and Eigenvalues

•Definition. λ ∈ C is an eigenvalue of A ∈ Rn×n if

X (λ) = det(λI − A) = 0

• If λ is an eigenvalue ⇔

there exists a nonzero v ∈ Cn such that
(λI − A)v = 0, i.e.,

Av = λv

Such a v is termed an eigenvector of A associated with
the eigenvalue λ.
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Eigenvectors and Eigenvalues

• If λ is an eigenvalue ⇔

there exists a nonzero w ∈ Cn such that
wT (λI − A) = 0, i.e.,

wTA = λwT

Such a w is called a left eigenvector of A.

•Conjugate symmetry. If v ∈ Cn is an eigenvector
associated with λ ∈ C, then v̄ is the eigenvector
associated with λ̄.

Av = λv ⇒ Āv = λ̄v ⇒ Av̄ = λ̄v̄
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Eigenvectors and Eigenvalues

• Scaling. If v is an eigenvector, the effect of A on v is
similar to scaling v by λ.

– λ ∈ R, λ > 0.
v and Av point in the same
direction.

– λ ∈ R, λ < 0.
v and Av point in opposite
directions.

– λ ∈ R, |λ| < 1.
v is larger than Av.

– λ ∈ R, |λ| > 1.
v is smaller than Av.

x1

x2x3

x4 x5

Rn
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Eigenvectors and Eigenvalues

•Diagonalization.

Suppose v1, v2, . . . , vn are linearly independent
eigenvectors of A ∈ Rn×n.

Avi = λivi, i = 1, . . . , n

•We can express this as

A[v1 v2 . . . vn] = [v1 v2 . . . vn]





λ1
. . .

λn
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Eigenvectors and Eigenvalues

•Define T = [v1 v2 . . . vn] and
Λ = diag(λ1, λ2, . . . , λn), so that

AT = TΛ

•Thus,

T−1AT = Λ

T−1 exists since v1, v2, . . . , vn are linearly independent.

• T is a similarity transformation that diagonalizes A.
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Eigenvectors and Eigenvalues

•Converse. If there exist a vector T = [v1 v2 . . . vn]
such that

T−1AT = Λ = diag(λ1, λ2, . . . , λn)

then AT = TΛ, i.e.,

Avi = λivi, i = 1, . . . , n

such that v1, v2, . . . , vn are linearly independent
eigenvectors of A.

•Briefly, A is diagonalizable if

– there exists T such that T−1AT = Λ is diagonal.

–A has a set of linearly independent eigenvectors.
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Eigenvectors and Eigenvalues

•We can also use the left eigenvectors for diagonalization.

Rewrite T−1AT = Λ as T−1A = ΛT−1.

Assigning, wT
1 , w

T
2 , . . . , w

T
n

as the rows of T−1 we get








wT
1

wT
2
...

wT
n







A = Λ








wT
1

wT
2
...

wT
n








•Thus, wT
i A = Λiw

T
i .

The rows of T−1 are left eigenvectors. They are also
normalized so that

wT
i vj = δij
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Eigenvectors and Eigenvalues

•Definition. If A is not diagonalizable, it is called
defective.

•Take for example

A =

[
0 0
0 1

]

The characteristic polynomial is X (s) = s2.

⇒ λ = 0 is the only eigenvalue.

Eigenvectors satisfy Av = 0v = 0.
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Eigenvectors and Eigenvalues

•Thus, Av =

[
0 0
0 1

] [
v1
v2

]

= 0

and the eigenvectors have the form

v =

[
v1
0

]

where v1 6= 0

⇒ A does not have two linearly independent
eigenvectors.
⇒ A is not diagonalizable.

• If A has distinct eigenvalues, i.e., λi 6= λj for i 6= j,
then A is diagonalizable.
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Jordan Canonical Form

•The diagonal form is important in investigating how a
control system behaves.

What if A cannot be diagonalized?

Alternatively, we can use the Jordan canonical form.

•Any matrix A ∈ Rn×n can be put in the Jordan
canonical form by the a similarity transformation.

T−1AT =





J1
. . .

Jq





where Ji is a Jordan block of size ni with eigenvalue λi.
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Jordan Canonical Form

•A Jordan block Ji of size
ni with eigenvalue λi.

Ji =







λi 1
λi

. . .

. . . 1
λi







•Properties of the Jordan form.

– J is upper diagonal.

– J is the special case of N Jordan blocks of size
ni = 1.

– Jordan form is unique (up to the permutations of the
blocks).

– we can have multiple blocks with the same eigenvalue.
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Jordan Canonical Form

•The Jordan form is useful for investigating system
concepts.

However, it is never used for numerical computations.

•How do we determine the Jordan canonical form.

Given

X (λ) = det(λI − A) = (s − λ1)
n1 . . . (s − λq)

nq

with distinct eigenvalues.

⇒ ni = 1 ⇒ A is diagonalizable.
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Jordan Canonical Form

•The dimension of N (λI − A) is the number of Jordan
blocks associated with eigenvalue λ.

• In general,

dimN (λI − A)k =
∑

λi = λ

min{k, ni}

Using k = 1, 2, . . . and dimN (λI − A)k, we can
deduce the sizes of the Jordan blocks associated with λ.
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Jordan Canonical Form

• Suppose T−1AT = J = diag(J1, . . . , Jq).

Express T as

T = [T1 T2 . . . Tq]

where Ti ∈ Cn×ni
are the columns of T associated with

ith Jordan block Ji.

•Expanding

A[T1 T2 . . . Tq] = [T1 T2 . . . Tq] · diag(J1, . . . , Jq)

we can write ATi = TiJi.
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Jordan Canonical Form

•Let Ti = [vi1 vi2 . . . vini
], then we have

Avi1 = λivi1

i.e., the first column of each Ti is an eigenvector
associated with eigenvalue λi.

•For j = 1, . . . , ni − 1,

Avij = vi,j−1 + λivij

Vectors vi1, . . . , vini
are called generalized eigenvectors.
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Cayley-Hamilton Theorem

•Useful for deriving solutions to linear equations.

• If p(s) = a0 + a1s + . . . + aks
k is a polynomial and

A ∈ Rn×n, we define

p(A) = a0I + a1A + . . . + akA
k

•Cayley-Hamilton theorem.

For any A ∈ Rn×n, we have X (A) = 0, where
X (s) = det(sI − A).
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Cayley-Hamilton Theorem

•Example.

For A =

[
1 3
4 2

]

, we have

X (s) = det(sI − A) = s2 − 3s − 10

Thus,

X (A) = A2 − 3A − 10I

=

[
13 9
12 16

]

− 3

[
1 3
4 2

]

− 10I

= 0
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Cayley-Hamilton Theorem

•Corollary. For every p ∈ Z+, we have

Ap ∈ span{I,A,A2, . . . , An−1}

Additionally, if A is nonsingular, the above holds for
p ∈ Z.

•Every power of A can be expressed as a linear
combination of I,A,A2, . . . , An−1.

Proof. Divide sp by X (s) to get

sp

X (s)
= q(s) +

r(s)

X (s)
⇒ sp = q(s)X (s) + r(s)
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Cayley-Hamilton Theorem

•Where q(s) is the quotient polynomial and
r(s) = α0 + α1s + . . . + αn−1s

n−1 is the
remainder polynomial.

•Then,

Ap = q(A)X (A) + r(A)

= r(A)

= α0I + α1A + . . . + αn−1A
n−1

•You could also show this by taking X (A) = 0 and
expressing higher powers of A in terms of lower powers
of A.
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Cayley-Hamilton Theorem

•For p = − 1, rewrite Cayley-Hamilton theorem

X (A) = An + an−1A
n−1 + . . . + a0I = 0

as

I = A

[

−
a1

a0
−

a2

a0
A − . . . −

1

a0
An−1

]

•Note : since A is nonsigular, a0 6= 0. Thus,

A−1 = −
a1

a0
−

a2

a0
A − . . . −

1

a0
An−1

i.e., the inverse of A may be expressed as a linear
combination of I,A,A2, . . . , An−1.
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Proof of Cayley-Hamilton Theorem

•First assume A is diagonalizable, i.e., T−1AT = Λ.

X (s) = (s − λ1)(s − λ2) . . . (s − λn)

• Since X (A) = X (TΛT−1) = TX (Λ)T−1,
it is sufficient to show X (Λ) = 0.

X (Λ) = (Λ − λ1I)(Λ − λ2I) . . . (Λ − λnI)

= diag(0, λ2 − λ1, . . . , λn − λ1)

. . . diag(λ1 − λn, . . . , λn−1 − λn, 0)

= 0
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Proof of Cayley-Hamilton Theorem

•For the general case, use the Jordan form.

With T−1AT = J , we get

X (s) = (s − λ1)
n1(s − λ2)

n2 . . . (s − λn)
nq

• It is sufficient to show X (Ji) = 0.

X (Ji) = (Ji − λ1I)
n1 . . .





0 1 0 . . .
0 0 1 . . .

· · ·





︸ ︷︷ ︸

(Ji − λiI)
ni

· · · (Ji − λqI)
nq

= 0
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Summary

•Linear algebra is the main tool for dealing with linear
systems.

•Definitions.

– vector space and subspace

– Independence, basis and dimension

–Range, nullspace, inverse and rank

– Similarity transform, norms and inner product

• Important concepts.

– Eigenvectors and eigenvalues

– Jordan canonical form and Cayley-Hamilton theorem

Linear Algebra Review

EE 212

c©2003 M.C. Ramos

UP EEE Department


