Vector Spaces

• The following properties hold for a vector space.

 $-x + y = y + x, \forall x, y \in \mathcal{V}$ (commutative).

 $-\forall x \in \mathcal{V} \exists (-x) \in \mathcal{V} \text{ such that } x + (-x) = 0.$

 $-\alpha(x + y) = \alpha x + \alpha y, \forall i \alpha \in R, \forall x, y \in \mathcal{V}.$

 $-(\alpha + \beta)x = \alpha x + \beta x, \forall \alpha, \beta \in R, \forall x \in \mathcal{V}.$

 $-(x + y) + z = x + (y + z), \forall x, y \in \mathcal{V}$

 $-(lphaeta)x = lpha(eta x), \, orall \, lpha, eta \, \in \, R, \, orall \, x \, \in \, \mathcal{V}.$

• Vector space and subspaces • Concept of a vector space. Consider the familiar spaces $R^1, R^2, \ldots R^n$. $-R^1$ is a 1-dimensional space, i.e., a line. • Independence, basis and dimension $-R^2$ is a 2-dimensional or a plane. Can we generalize operations performed in this spaces? • Range, nullspace, inverse and rank • Similarity transform, norms and inner product • A linear (vector) space consists of -a set \mathcal{V} . • Eigenvectors and eigenvalues -a vector sum $+: \mathcal{V} \times \mathcal{V} \to \mathcal{V}$. -scalar multiplication : $R \times \mathcal{V} \rightarrow \mathcal{V}$. -a zero element : $0 \in \mathcal{V}$. • Jordan canonical form and Cayley-Hamilton theorem ©2003 M.C. Ramos Linear Algebra Review Linear Algebra Review ©2003 M.C. Ramos EE 212 UP EEE Department EE 212 UP EEE Department

Vector Spaces

Examples.
-V₁ = Rⁿ with standard vector addition and scalar multiplication.
-V₂ = {0} (where 0 ∈ Rⁿ).
-V₃ = span(v₁, v₂,..., v_k) where span(v₁, v₂,..., v_k) = {α₁v₁ + ... + α_kv_k | α_i ∈ R}.
-V₄ = {x : R₊ → Rⁿ | x is differentiable}. vector sum is the sum of the functions, i.e., (x + z)(t) = x(t) + z(t) and scalar multiplication is defined by (αx)(t) = αx(t).
-V₅ = {x ∈ V₄ : x = Ax} (points in V₅ are trajectories of the linear system x = Ax).

(associative).

 $-0 + x = x, \forall x \in \mathcal{V}.$

 $-1 \cdot x = x, \forall x \in \mathcal{V}.$

- A subspace of a vector space is a subset of a vector space which is in itself a vector space.
 - $-\mathcal{V}_1, \mathcal{V}_2 ext{ and } \mathcal{V}_3 ext{ are subspaces of } R^n.$
 - $-\mathcal{V}_5$ is a subspace of \mathcal{V}_4 .
- For a subspace, we only need to check that
 - -vector addition holds and
 - -scalar multiplication holds.

Other properties follow and are automatically satisfied.

inear	Algebra	Review
EE 21:	2	

©2003 M.C. Ramos UP EEE Department

Independent Vectors, Basis and Dimension

- Independence is also equivalent to saying
- vector $v_i, i \in \{1, \ldots, k\}$ cannot be expressed as a linear combination of the other vectors

 $v_1,\ldots,v_{i-1},v_{i+1},\ldots,v_k.$

- Linearly dependent vectors. One vector may be expressed as a linear combination of the other vectors.
- A set of vectors $\{v_1, v_2, \ldots, v_k\}$ is a basis for a vector space $\mathcal V$ if
 - $egin{aligned} &-v_1,v_2,\ldots,v_k ext{ span } \mathcal{V}, ext{ i.e., } \mathcal{V} &= ext{ span}(v_1,v_2,\ldots,v_k). \ &-v_1,v_2,\ldots,v_k ext{ are linearly independent.} \end{aligned}$

- Vectors $v_1, v_2, \ldots, v_k \in R^n$ are independent iff $lpha_1 v_1 + lpha_2 v_2 + \ldots + + lpha_k v_k = 0$ $\Rightarrow lpha_1 = lpha_2 = \ldots = lpha_k = 0$
- Saying vectors are independent is equivalent to coefficients of $\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_k v_k = v$ are uniquely determined, i.e.,

$$lpha_1v_1 + lpha_2v_2 + \ldots + lpha_kv_k \ = eta_1v_1 + eta_2v_2 + \ldots + eta_kv_k$$
ies that $lpha_1 = eta_1, \ lpha_2 = eta_2, \ \ldots, lpha_k = eta_k.$

Linear Algebra Review EE 212

impl

©2003 M.C. Ramos UP EEE Department

Independent Vectors, Basis and Dimension

ullet If you have a set of basis vectors, then every $v \in \mathcal{V}$ can be uniquely expressed as

 $v = lpha_1 v_1 + lpha_2 v_2 + \ldots + lpha_k v_k$

• You can have many sets of basis vectors for a given vector space \mathcal{V} .

For a given vector space \mathcal{V} , the number of vectors in any basis is the same.

• Definition. The dimension of a vector space, dim \mathcal{V} , is the number of vectors in any basis.

• The nullspace of $A \in \mathbb{R}^{m \times n}$ is defined as

 $\mathcal{N}(A) \ = \ \{x \ \in \ R^n \mid Ax \ = \ 0\}$

 $-\mathcal{N}(A)$ is a set of vectors mapped to zero by y = Ax. $-\mathcal{N}(A)$ is a set of vectors othogonal to all rows of A.

$$ullet$$
 Given $y = Ax$
 $- ext{if } z \in \mathcal{N}(A), ext{ then } y = A(x + z).$
 $- ext{ conversely, if } y = A ilde{x}, ext{ then } ilde{x} = x + z ext{ for some } z \in \mathcal{N}(A).$

Linear Algebra Review EE 212 ©2003 M.C. Ramos UP EEE Department

Nullspace and Range

- Suppose $z \in \mathcal{N}(A)$.
- The linear equation y = Ax can represent the output due to input x.
 - -z is an input with no output result.
 - -x and x + z have the same output.
- $\mathcal{N}(A)$ characterizes the freedom of input choice that will result in a given output.

- -x can always be uniquely determined from y = Ax(i.e., the linear map y = Ax does not lose information).
- columns of A are independent (hence, a basis for their span).
- -A has a left inverse, i.e., the is a matrix

 $B \in R^{n imes m} ext{ such that } BA = I. \ -\det(A^TA)
eq 0.$

Linear Algebra Review EE 212 ©2003 M.C. Ramos UP EEE Department

Nullspace and Range

- The linear equation y = Ax can represent measurement of x.
 - -z will not be detected by sensors, i.e., you get zero sensor readings.
 - -x and z + z are indistinguishable from sensors : Ax = A(x + z).
- $\mathcal{N}(A)$ characterizes ambiguity in x from y = Ax.

• The range of $A \in \mathbb{R}^{m \times n}$ is defined as

$$\mathcal{R}(A) \ = \ \{Ax \mid x \ \in \ R^n\} \ \subseteq \ R^m$$

- This can be interpreted as
 - $-\mathcal{R}(A)$ is the set of vectors that can be 'reached' by the mapping y = Ax.
 - $-\mathcal{R}(A)$ is equivalent to the span of columns of A.
 - $-\mathcal{R}(A)$ is the set of vectors y such that Ax = y has a solution.
- \bullet Also called as the column space of A.

inear	Algebra	Review
E 212	2	

©2003 M.C. Ramos UP EEE Department

- Nullspace and Range
- Suppose $v \in \mathcal{R}(A)$ and $w \notin \mathcal{R}(A)$.
- Let y = Ax represent a measurement of x.
 -y = v is a possible or consistent sensor signal.
 -y = w is impossible or inconsistent; sensors have failed or model is wrong.
- Let y = Ax represent an output resulting from input x.
 - -y = v is a possible output.
 - -y = w cannot be an output or result.
 - $\mathcal{R}(A)$ characterizes the possible results or outputs.

- A is called onto if $\mathcal{R}(A) = R^m \Leftrightarrow$
 - -Ax = y can be solved in x for any y.
 - the columns of A span \mathbb{R}^m .
- -A has a right inverse, i.e., there is a matrix $B \in \mathbb{R}^{n \times m}$ such that AB = I.
- the rows of A are independent.

 $-\det(AA^T)
eq 0.$

Linear Algebra Review EE 212 ©2003 M.C. Ramos UP EEE Department

Inverse and Rank of a Matrix

- $A \in \mathbb{R}^{n \times n}$ is invertible or nonsingular if det $A \neq 0$.
- Equivalently.
 - the columns of A are a basis for \mathbb{R}^n .
 - the rows of A are a basis for \mathbb{R}^n .
 - -y = Ax has a unique solution x for every $y \in R^n$.
 - -A has a (left and right) inverse denoted by
 - $A^{-1} \in R^{n \times n}$, with $A^{-1}A = AA^{-1} = I$.
- $egin{array}{rcl} -\mathcal{N}(A)&=&\{0\}.\ -\mathcal{R}(A)&=&R^n.\ -\det(A^TA)&=&\det(AA^T)\,
 eq\,0. \end{array}$

• Definition. Rank of $A \in \mathbb{R}^{m \times n}$ as

$$\operatorname{rank}(A) = \dim \mathcal{R}(A)$$

- Useful facts.
 - $-\operatorname{rank}(A) = \operatorname{rank}(A^T).$
 - $-\operatorname{rank}(A)$ is the maximum number of independent columns of A.
 - $-\operatorname{rank}(A)$ is the maximum number of independent rows of A.

$$-\operatorname{rank}(A) \leq \min(m, n).$$

$$-\mathrm{rank}(A) \ + \ \dim \mathcal{N}(A) \ = \ n$$

Linear Algebra Review EE 212 ©2003 M.C. Ramos UP EEE Department

Inverse and Rank of a Matrix

- Definition. Full rank. For $A \in \mathbb{R}^{m \times n}$ we always have rank $(A) \leq \min(m, n)$. A is full rank if rank $(A) = \min(m, n)$.
- Full rank square matrices are nonsingular.
- For fat matrices (n > m), full rank means that the rows are independent.
- For tall matrices (m > n), full rank means that the columns are independent.

- Interpretation of $\operatorname{rank}(A) + \dim \mathcal{N}(A) = n$.
- The rank(A) is the dimension of the set that can be reached by the mapping y = Ax.
- The dim $\mathcal{N}(A)$ is the dimension of the subset of all possible x that gets mapped to zero by y = Ax.
- Conservation of dimension. Each dimension of input either appears at the output or gets mapped to zero.

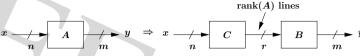
```
Linear Algebra Review
EE 212
```

©2003 M.C. Ramos UP EEE Department

Inverse and Rank of a Matrix

- Interpretation of rank in coding. Rank product. $rank(BC) < min\{rank(B), rank(C)\}.$
- Thus, if A = BC with $B \in \mathbb{R}^{m \times r}$, $C \in \mathbb{R}^{r \times n}$, then rank $(A) \leq r$.
- Conversely, if rank(A) = r then $A \in \mathbb{R}^{m \times n}$ can be factored as A = BC with $B \in \mathbb{R}^{m \times r}$, $C \in \mathbb{R}^{r \times n}$.

• Transmission channel.



rank(A) = r is the minimum number of lines needed to faithfully reconstruct y from x.

- Impact in computing y = Ax.
 - -directly : you need to perform mn operations -compute z = Cx first, then y = Bz: rn + mr = (m + n)r operations.

```
Significant savings if r \ll \min\{m, n\}.
```

Linear Algebra Review EE 212 ©2003 M.C. Ramos UP EEE Department

Coordinate Transformation

• If (t_1, t_2, \ldots, t_n) is another basis for \mathbb{R}^n , we may write

 $x = ilde{x}_1 t_1 + ilde{x}_2 t_2 + \ \ldots + \ ilde{x}_n t_n$

where \tilde{x}_i are the coordinates of x in the new basis.

• Define $T = [t_1 t_2 \dots t_n]$ such that $x = T\tilde{x}$. We have

 $ilde{x} ~=~ T^{-1} x$

- -T is nonsingular since t_i are a basis.
- $-T^{-1}$ transforms the standard basis coordinates of x into the t_i coordinates.

Standard basis vectors in \mathbb{R}^{n} : $(e_{1}, e_{2}, \dots, e_{n})$ e_{i} has a 1 in the <i>i</i> th component and zeros in the rest. e_{i}	$= \begin{bmatrix} 0\\ \vdots\\ 0\\ 1\\ 0\\ \vdots\\ 0 \end{bmatrix}$
Thus, we can write any $x \in \mathbb{R}^n$ as	
$x = x_1e_1 + x_2e_2 + \ldots + x_n$	$_n e_n$

The coefficients x_i are the elements (coordinates) of x in the standard basis.

Linear Algebra Review EE 212 ©2003 M.C. Ramos UP EEE Department

Coordinate Transformation

• Consider the linear transformation

 \boldsymbol{x}

 $y = Ax, \qquad A \in R^{n \times n}$

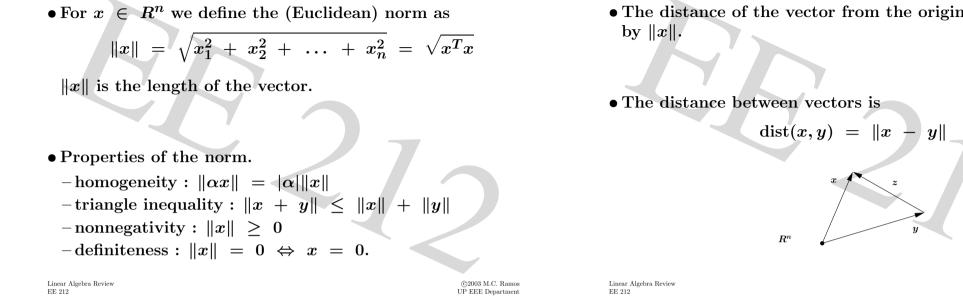
• Express y and x in terms of t_1, t_2, \ldots, t_n .

$$= T ilde{x}, \qquad y = T ilde{y}$$

Thus,

$$ilde{y} = (T^{-1}AT) ilde{x}$$

 $-A \rightarrow T^{-1}AT$ is called a similarity transformation. - a similarity transformation T expresses the linear transformation y = Ax in t_1, t_2, \ldots, t_n coordinates.



Inner Product

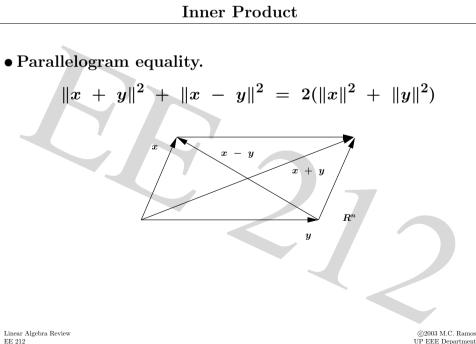
• The inner product of two vectors $x, y \in \mathbb{R}^n$ is defined \mathbf{as}

$$\langle x,y
angle \; = \; x_1 y_1 \; + \; x_2 y_2 \; + \; \ldots \; + \; x_n y_n \; = \; x^T y$$

• Properties of the inner product.

Linear Algebra Review EE 212

• The distance of the vector from the origin is also given



©2003 M.C. Ramos

UP EEE Department

• Cauchy-Schwartz inequality. For any $x, y \in \mathbb{R}^n$,

 $|x^T y| < ||x|| ||y||$

Note that this only holds for the 2-norm.

• Angle between vectors in \mathbb{R}^n .

$$heta \ = \ igtriangle (x,y) \ = \ \cos^{-1} rac{x^T y}{\|x\| \|y\|}$$

• Example $r^T u_1 < 0$ and $r^T u_2 > 0$

Thus,

```
x^T y = \|x\| \|y\| cos \theta
```

Linear Algebra Review EE 212

• Special cases and the meaning of $x^T y$. -x and y are aligned. $\theta = 0 \Rightarrow x^T y = ||x|| ||y||.$ if $x \neq 0, y = \alpha x$ for some $\alpha \geq 0$ -x and y are in opposite directions. $\theta = \pi \Rightarrow x^T y = - \|x\| \|y\|.$ if $x \neq 0, y = -\alpha x$ for some $\alpha > 0$ -x and y are orthogonal $(x \perp y)$. $\theta = \pm \pi/2 \Rightarrow x^T y = 0$ $-x^T y > 0$ means $\angle(x, y)$ is acute. $-x^T y < 0$ means $\angle(x, y)$ is obtuse.

Linear Algebra Review EE 212

©2003 M.C. Ramos UP EEE Department

Eigenvectors and Eigenvalues

• Definition. $\lambda \in C$ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$ if

$$\mathcal{X}(\lambda) \;=\; \det(\lambda I \;-\; A) \;= 0$$

• If λ is an eigenvalue \Leftrightarrow there exists a nonzero $v \in C^n$ such that $(\lambda I - A)v = 0$, i.e.,

 $Av = \lambda v$

Such a v is termed an eigenvector of A associated with the eigenvalue λ .

• Halfspace with outward normal vector
$$y$$
 and boundary passing through the origin.
 $\{x \mid x^Ty \leq 0\}$
 R^n
 x_2
 y_2
 $x_2^Ty_2 > 0$

Inner Product

Linear Algebra Review EE 212

©2003 M.C. Ramos

• If λ is an eigenvalue \Leftrightarrow

there exists a nonzero $w \in C^n$ such that $w^T(\lambda I - A) = 0$, i.e.,

 $w^T A = \lambda w^T$

Such a w is called a left eigenvector of A.

• Conjugate symmetry. If $v \in C^n$ is an eigenvector associated with $\lambda \in C$, then \bar{v} is the eigenvector associated with $\bar{\lambda}$.

$$Av \;=\; \lambda v \;\Rightarrow\; ar{Av} \;=\; ar{\lambda v} \;\Rightarrow\; Aar{v} \;=\; ar{\lambda v}$$

Linear Algebra Review EE 212 ©2003 M.C. Ramos UP EEE Department

Eigenvectors and Eigenvalues

• Diagonalization.

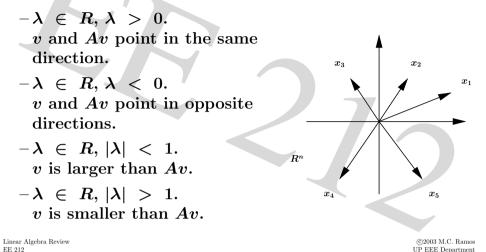
Suppose v_1, v_2, \ldots, v_n are linearly independent eigenvectors of $A \in \mathbb{R}^{n \times n}$.

$$Av_i \ = \ \lambda_i v_i, \qquad i \ = \ 1, \dots, n$$

• We can express this as

$$A[v_1 v_2 \ldots v_n] = [v_1 v_2 \ldots v_n]$$

Linear Algebra Review EE 212 • Scaling. If v is an eigenvector, the effect of A on v is similar to scaling v by λ .



Eigenvectors and Eigenvalues

• Define
$$T = [v_1 \ v_2 \ \dots \ v_n]$$
 and
 $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$, so that
 $AT = T\Lambda$

• Thus,

$$T^{-1}AT = \Lambda$$

 T^{-1} exists since v_1, v_2, \ldots, v_n are linearly independent.

 $\bullet T$ is a similarity transformation that diagonalizes A.

• Converse. If there exist a vector $T = [v_1 \ v_2 \ \dots \ v_n]$ such that

$$T^{-1}AT = \Lambda = ext{diag}(\lambda_1,\lambda_2,\ldots,\lambda_n)$$

then $AT = T\Lambda$, i.e.,

 $Av_i \ = \ \lambda_i v_i, \qquad i \ = \ 1, \dots, n$

- such that v_1, v_2, \ldots, v_n are linearly independent eigenvectors of A.
- \bullet Briefly, A is diagonalizable if
 - -there exists T such that $T^{-1}AT = \Lambda$ is diagonal.
- -A has a set of linearly independent eigenvectors.

Eigenvectors and Eigenvalues

- Definition. If A is not diagonalizable, it is called defective.
- Take for example

 $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

The characteristic polynomial is $\mathcal{X}(s) = s^2$.

 $\Rightarrow \lambda = 0$ is the only eigenvalue.

Eigenvectors satisfy Av = 0v = 0.

• We can also use the left eigenvectors for diagonalization. Rewrite $T^{-1}AT = \Lambda$ as $T^{-1}A = \Lambda T^{-1}$.

Assigning,
$$w_1^T, w_2^T, \dots, w_n^T$$
 $\begin{vmatrix} w_1^T \\ w_2^T \\ \vdots \\ w_n^T \end{vmatrix} A = \Lambda \begin{vmatrix} w_1^T \\ w_2^T \\ \vdots \\ w_n^T \end{vmatrix}$

• Thus, $w_i^T A = \Lambda_i w_i^T$.

The rows of T^{-1} are left eigenvectors. They are also normalized so that

$$w_i^T v_j \;=\; \delta_{ij}$$

Linear Algebra Review EE 212 ©2003 M.C. Ramos UP EEE Department

Eigenvectors and Eigenvalues

• Thus, $Av = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0$

and the eigenvectors have the form

$$\begin{bmatrix} v_1 \\ 0 \end{bmatrix} \quad \text{ where } v_1 \neq 0$$

 \Rightarrow A does not have two linearly independent eigenvectors.

 $\Rightarrow A$ is not diagonalizable.

• If A has distinct eigenvalues, i.e., $\lambda_i \neq \lambda_j$ for $i \neq j$, then A is diagonalizable.

• The diagonal form is important in investigating how a control system behaves.

What if A cannot be diagonalized?

Alternatively, we can use the Jordan canonical form.

• Any matrix $A \in \mathbb{R}^{n \times n}$ can be put in the Jordan canonical form by the a similarity transformation.

$$T^{-1}AT = \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_q \end{bmatrix}$$

where J_i is a Jordan block of size n_i with eigenvalue λ_i .

Jordan Canonical Form

• The Jordan form is useful for investigating system concepts.

However, it is never used for numerical computations.

• How do we determine the Jordan canonical form. Given

$$\mathcal{X}(\lambda) \;=\; \det(\lambda I \;-\; A) \;=\; (s \;-\; \lambda_1)^{n_1} \dots (s \;-\; \lambda_q)^{n_q}$$

with distinct eigenvalues.

$$\Rightarrow n_i = 1 \Rightarrow A$$
 is diagonalizable.

Linear Algebra Review EE 212

• A Jordan block J_i of size n_i with eigenvalue λ_i . $J_i = \begin{bmatrix} \lambda_i & 1 & & \\ \lambda_i & \ddots & 1 & \\ & \ddots & 1 & \\ & & \ddots & 1 \end{bmatrix}$

- -J is upper diagonal.
- -J is the special case of N Jordan blocks of size $n_i = 1$.
- Jordan form is unique (up to the permutations of the blocks).
- we can have multiple blocks with the same eigenvalue.

Jordan Canonical Form

• The dimension of $\mathcal{N}(\lambda I - A)$ is the number of Jordan blocks associated with eigenvalue λ .

• In general,

$$\dim \mathcal{N}(\lambda I - A)^k = \sum_{\lambda_i = \lambda} \min\{k, n_i\}$$

Using k = 1, 2, ... and dim $\mathcal{N}(\lambda I - A)^k$, we can deduce the sizes of the Jordan blocks associated with λ .

• Suppose
$$T^{-1}AT = J = \operatorname{diag}(J_1, \ldots, J_q)$$

Express T as

 $T = [T_1 \ T_2 \ \dots \ T_q]$

where $T_i \in C_{n \times n_i}$ are the columns of T associated with *i*th Jordan block J_i .

• Expanding

$$A[T_1 T_2 \ldots T_q] = [T_1 T_2 \ldots T_q] \cdot \operatorname{diag}(J_1, \ldots, J_q)$$

we can write $AT_i = T_i J_i$.

Linear Algebra Review EE 212 ©2003 M.C. Ramos UP EEE Department

Cayley-Hamilton Theorem

• Useful for deriving solutions to linear equations.

• If $p(s) = a_0 + a_1 s + \ldots + a_k s^k$ is a polynomial and $A \in \mathbb{R}^{n \times n}$, we define

 $p(A) = a_0 I + a_1 A + \ldots + a_k A^k$

• Cayley-Hamilton theorem.

For any $A \in \mathbb{R}^{n \times n}$, we have $\mathcal{X}(A) = 0$, where $\mathcal{X}(s) = \det(sI - A)$.

Linear Algebra Review EE 212 ©2003 M.C. Ramos UP EEE Department

• Let
$$T_i = [v_{i1} \ v_{i2} \ \dots \ v_{in_i}]$$
, then we have

$$Av_{i1} = \lambda_i v_{i1}$$

i.e., the first column of each T_i is an eigenvector associated with eigenvalue λ_i .

• For
$$j = 1, ..., n_i - 1$$
,

$$Av_{ij} ~=~ v_{i,j-1} ~+~ \lambda_i v_{ij}$$

Vectors v_{i1}, \ldots, v_{in_i} are called generalized eigenvectors.

Linear Algebra Review EE 212 ©2003 M.C. Ramos UP EEE Department

Cayley-Hamilton Theorem

Example.
For
$$A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$$
, we have
 $\mathcal{X}(s) = \det(sI - A) = s^2 - 3s - 10$

Thus,

$$\begin{aligned} \mathcal{X}(A) &= A^2 - 3A - 10I \\ &= \begin{bmatrix} 13 & 9 \\ 12 & 16 \end{bmatrix} - 3 \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} - 10I \\ &= 0 \end{aligned}$$

• Corollary. For every $p \in Z_+$, we have

 $A^p \in \operatorname{span} \{I, A, A^2, \dots, A^{n-1}\}$

Additionally, if A is nonsingular, the above holds for $p \in Z$.

• Every power of A can be expressed as a linear combination of $I, A, A^2, \ldots, A^{n-1}$.

Proof. Divide s^p by $\mathcal{X}(s)$ to get

$$rac{s^p}{\mathcal{X}(s)} \;=\; q(s)\;+\;rac{r(s)}{\mathcal{X}(s)}\;\Rightarrow\; s^p\;=\; q(s)\mathcal{X}(s)\;+\;r(s)$$

Linear Algebra Review EE 212 ©2003 M.C. Ramos UP EEE Department

Cayley-Hamilton Theorem

• For
$$p = -1$$
, rewrite Cayley-Hamilton theorem $\mathcal{X}(A) = A^n + a_{n-1}A^{n-1} + \ldots + a_0I = 0$ as $I = A \left[-\frac{a_1}{a_0} - \frac{a_2}{a_0}A - \ldots - \frac{1}{a_0}A^{n-1} \right]$

• Note : since A is nonsigular, $a_0 \neq 0$. Thus,

$$A^{-1} = -\frac{a_1}{a_0} - \frac{a_2}{a_0}A - \dots - \frac{1}{a_0}A^{n-1}$$

i.e., the inverse of A may be expressed as a linear combination of $I, A, A^2, \ldots, A^{n-1}$.

• Where q(s) is the quotient polynomial and $r(s) = \alpha_0 + \alpha_1 s + \ldots + \alpha_{n-1} s^{n-1}$ is the remainder polynomial.

Then,

$$A^{p} = q(A)\mathcal{X}(A) + r(A)$$

$$= r(A)$$

$$= \alpha_{0}I + \alpha_{1}A + \dots + \alpha_{n-1}A^{n-1}$$

• You could also show this by taking $\mathcal{X}(A) = 0$ and expressing higher powers of A in terms of lower powers of A.

```
Linear Algebra Review
EE 212
```

©2003 M.C. Ramos UP EEE Department

Proof of Cayley-Hamilton Theorem

• First assume A is diagonalizable, i.e., $T^{-1}AT = \Lambda$.

$$\mathcal{X}(s) = (s - \lambda_1)(s - \lambda_2) \dots (s - \lambda_n)$$

• Since $\mathcal{X}(A) = \mathcal{X}(T\Lambda T^{-1}) = T\mathcal{X}(\Lambda)T^{-1}$, it is sufficient to show $\mathcal{X}(\Lambda) = 0$.

$$egin{aligned} \mathcal{X}(\Lambda) &= (\Lambda \ - \ \lambda_1 I)(\Lambda \ - \ \lambda_2 I)\dots(\Lambda \ - \ \lambda_n I) \ &= \mathrm{diag}(0,\lambda_2 \ - \ \lambda_1,\dots,\lambda_n \ - \ \lambda_1) \ &\dots\mathrm{diag}(\lambda_1 \ - \ \lambda_n,\dots,\lambda_{n-1} \ - \ \lambda_n,0) \ &= 0 \end{aligned}$$

Linear Algebra Review EE 212 ©2003 M.C. Ramos UP EEE Department

- For the general case, use the Jordan form.
 - With $T^{-1}AT = J$, we get

$$\mathcal{X}(s) = (s - \lambda_1)^{n_1} (s - \lambda_2)^{n_2} \dots (s - \lambda_n)^{n_q}$$

• It is sufficient to show $\mathcal{X}(J_i) = 0$.

$$\mathcal{X}(J_i) = (J_i - \lambda_1 I)^{n_1} \dots \underbrace{\begin{bmatrix} 0 \ 1 \ 0 \dots \\ 0 \ 0 \ 1 \dots \\ \dots \\ (J_i - \lambda_i I)^{n_i}}^{n_1} \dots (J_i - \lambda_q I)^{n_q}$$
$$= 0$$

Linear Algebra Review EE 212

©2003 M.C. Ramos UP EEE Department

- Linear algebra is the main tool for dealing with linear systems.
- Definitions.
 - -vector space and subspace
 - Independence, basis and dimension
 - -Range, nullspace, inverse and rank
 - -Similarity transform, norms and inner product
- Important concepts.
 - -Eigenvectors and eigenvalues
 - Jordan canonical form and Cayley-Hamilton theorem

Linear Algebra Review EE 212 ©2003 M.C. Ramos UP EEE Department