Today’s EE 212 Lecture How Do We Get State-space Models

e State-space models from physics. e From physical descriptions.

—write down the equations governing the system.

—identify a state vector.

* Stge-spact@noghls frolfPDEs. —rewrite the system equations using the state vector.

e Canonical forms.
e From ordinary differential equations (ODEs).

. L. Solve ODEs using canonical state-space realizations.
e Diagonal realization.

e Describing systems. Internal and external descriptions.
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Examples Examples

e Simple pendulum (unit length). e Solution to simple pendulum equations.

Exact solution is difficult to get.

mo mgsinf = 0
T mg But for small x, sin®y = 1, so linearize the state

T1 0 i equations to
With state L”?] = {0], | m i[fﬂll l T2 }
| dt | z2 —gx1

d x| _ T2 /\

dt i) _ —g Sin i mg sin 6 mg

e With initial conditions x1(0) = 6y and x2(0) = 0, we
have
e Two-state, nonlinear, time-invariant system. z1(t) = 69 cos(\/gt), x2 = 699 sin(\/gt)

Simple harmonic motion.
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Examples

e Series RLC Circuit.

d? d 1
L——i(t R—i(t —i(t) =
dt2z( ) + dtz( ) + Cz( )

With state [iﬂ - { /(%) ],

45(t)
d _ .
dt | T2 —IC — L) L2

A
LC

0

e Two-state, linear, time-invariant system.

We all know how to solve this.

Solved using standard ODE techniques.
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Examples

e T'wo-mass, .
1

xl

o
k2

two-spring
system. ™

MW

m2

x2

Equations of motion.

myE; = —kjzy + k2(x2 — 1)
mody = ka2(z2 — 1)

Thus, with q = {z;],

0 mo

M = [""’10], D=0 K
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e General mechanical system.

Mechanical system with k degrees of freedom with small
motions.

Mg + Dg + Kq = 0

—q(t) € R¥ is the vector of generalized displacements.

— M is the mass matrix, K is the stiffness matrix and
D is the damping matrix.

. _lq . 0 1
e With state x = [q], T = [—M_lK _M-1p | %

Linear, time-invariant system.
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Canonical Realizations from ODEs

e Restrict our attention to continuous-time LTI systems.

We will look at discrete-time systems in EE 233.

e Let us say we have a sytem describe by a differential
equation. Input-output relation is

2

d
b bo— b3——
[1-1— 2dt+ 3dt2

e

B Ll d? n d3 )
T T Mg T B T g3 Y
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Canonical Realizations from ODEs

Canonical Realizations from ODEs

e The I/O transfer function may be written as
Y (s) . b382 + bas + by
U(s) 83 + azs? + azs + a1

G(s) =

e Introducing a dummy variable E(s) and splitting the
equation gives
Y(s) b3s2 + bas + by E(s)
U(s) 83 + a3s? + ass + a1 E(s)
Y (s) = (b3s® + bas + by1)E(s)
U(s) = (s> + a3s® + aszs + a1)E(s)
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Canonical Realizations from ODEs

e We can now assign state variables as
A
E(s) = e(t) = x1(t)

SB(s) = Selt) = or(t) £ ax(t)

t
2
$2B(s) — %e(t) — %azg(t) 2 2a(t)

e The above state assignment is not unique. You can
choose other assignments.

Standard way of assigning state variables? Later.
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Canonical Realizations from ODEs

e Expanding and taking the inverse Laplace transform of

U(s) = (s3 + azs® + azs + a1)E(s)
gives

%w:’,(t) = —aizy(l) — agza(t) — azz3(t) + u(?)

e Also taking the inverse Laplace of the Y (s) equation
Y (s) = (b3s® + bas + by)E(s)
gives

y(t) = bii(t) + boma(t) + bsas(t)
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e Block diagram realization (controller canonical form).
y(t)

u(t)

—
Y
—
L
—

8

x3(t) x(t)

—a; |-
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Controller Canonical Form

e We can always go from ODE to the transfer function by
Laplace transform. Consider the transfer function

Y (s) B bpns™ ! 4+ bps" 2 + ...+ by
U(s) s + aps” 1 + ... + a1

G(s)

e Introducing a dummy variable E(s) and splitting the
resulting equation,

Y (s) bps™ 1 + b,18"2 + ... + by E(s)
U(s) s 4+ aps™ 1 + ... + ay E(s)

Y (s) = (bps™ ' + bp_15""% + ... + b1)E(s)
U(s) = (s" + ans" ! + ... + a1)E(s)
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Controller Canonical Form

Controller Canonical Form

e We now have the state equations for —x;(t),

t = 1,...,n — 1 in terms of other state variables.

e Expanding and taking the inverse Laplace transform of

U(s) = (8" + ans™ ' + ... + a1)E(s)
. . d
gives us the state equation for aa}n(t)

%wn(t)  —ormt) — agmat) =
— apxn(t) + u(t)
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e Noting the integration-differentiation transform, we can
assign state variables as

E(s) — e(t) 2 21t

sB(s) = Ze(t) = Saa() 2 @0t

PE(s) > elt) = Laat) 2 malt

1 n—1 d A
s"TIE(s) — e(t) = —xp_1(t) = x,(t
(s) dt"—l() 2% 1(t) n(t)
"Es) o L oe(t) = Lan(t)
S S —_— —a:
dtn "
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Controller Canonical Form

e In matrix form,

d
ax(t) = Axz(t) + Bu(t)

where )
z1 (%) &1 (%)
; dt ;
Zn(t) &n () |
0 1 0 0 | [0 ]
0 0 1 0 0
A = 0 0 o ... O B = i
: 0
| —a1 —a2 —a3z ... —ap | | 1]
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Controller Canonical Form

e The output equation is obtained by expanding and
taking the inverse Laplace transform of

Y(s) = (bps™ + bp_1s""2 + ... + b)) E(s)

which gives in matrix form,

1 (t)
y() = b1 by .o 5] | 20
wn(t)
or y(t) = Cx(t).
T UP EEE Department

Controller Canonical Form

Controller Canonical Form

e Block diagram realization.

y(t)

=+

b, b by

A A A

u(t) ; (t) ‘ ~ (1)
e
x5 (t)
a, |-
—ay |-
—ay |-
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e Consider again the transfer function
bnys" 1 + bn_lsn_2 + ... + by
s + aps” 1 + ... + ap
Multiplying by s="/s™", we can write
Y (s) bps— 1 + bn_ls_2 + 4+ bis™" E(s)
U(s) B 1 4+ ans ! + ... + ags™  E(s)

G(s) =

We can split this into two equations,
Y(s) = (bps™ ! + bp_1s72 + + bis ™) E(s)
U(s) = (1 4+ aps™ ' + + a1 ") E(s)

= E(s) = U(s) — aps 1E(s) — — a1s” "E(s)
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Standard Canonical Forms
e Controller (controllable) canonical form.
e Controllability canonical form.
e Observer (observable) canonical form.
e Observability canonical form.
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Standard Canonical Forms Standard Canonical Forms

e Observer canonical form. e Observer canonical form block diagram.
d u(t)
aw(t) = Az(t) + Bu(?), y(t) = Cz(t)
_ _ - ! ! |
000...0 —aq b1 By . b,
100...0 —as bo
A = 010...0 —ag B = i —1 @) — 2(t) za(t) y(t)
: bn—]_ / / L /
(000...1 —ap | i bn .
C =1[00...01] - - &y
A i A
i St spuce Modes e g, Stetespuce Modes A
Standard Canonical Forms Standard Canonical Forms
e Controllability canonical form. e Controllability canonical form block diagram.
d y(t)
—x(t) = Axz(t Bul(t t) = Cx(t o
Salt) = Az() + Bu(t),  y() = Ca(t) | =
[000...0 —aq | (1] 2 A 4,
100...0 —a2 0
A = 010...0 —asg B = : u(t)
. 0 % / 21(t) / MO % / ()
(000...1 —ap | | 0 |
C = (615 .. Bl ] i .
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Standard Canonical Forms

e Observability canonical form.

d
aw(t) = Az(t) + Bu(t), y(t) = Cx(t)
[0 1 0 0 ]
0O 0 1 ... 0 gl
A = 0O 0 0 ... 0 B = 32
| —a1 —az —a3 ... —an | Bn

[10 ... 0]
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e Suppose all poles of G(s) are distinct and real.
b3s? + bys + bl
(s = A1)(s — A2)(s — A3)

G(s) =

e Partial fraction expansion gives

71 Y2 73
G =
(s) s — A1 + s — Ao + s — A3

e We can realize each term as a separate system.

The output of the individual systems can be scaled (by
the v’s) and summed to get the overall output.
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Standard Canonical Forms

e Observability canonical form block diagram.

u(t)

ﬂ’n

—an

$2(t)

'

B

A

iy

1(t) y(t)
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e The diagonal realization is

x1(t)
xa(t)
x3(t)

y:

A1 0 O
0 X O

0 0 X3

[v1 Y2 73]

x1(t)
xa(t)
x3(t)

x1(t)
x2(t)
z3(t)

e Useful for independent control of states.

Individual modes are also obvious.
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Diagonal Realization

State-space to Transfer Function

e Block diagram of the diagonal realization.

1 (t)

- / o
L A1 J
u(t) — ®2(t) y(t)
- / o>l 72 ,ﬁr} -
Ao J
x3(t)
o~ | T s
Az
Lumped State-space Models ©2003 M.C. Ramos
EE 212 UP EEE Department

Describing Systems. Internal vs. External

e Given the state-space realization
r = Ax + Bu y = Cx + Du, xz(0) = 0

What is the transfer function from u to y?

e Take the Laplace transforms.

sX(s) = AX(s)+ BU(s), Y(s) = CX(s) + DU(s)

Simplify,
Y(s) = \[C(sI—A)_lB + DlU(s) = G(s)U(s)

transfer fu},lction, G(s)
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Describing Systems. Internal vs. External

e I/0O description (transfer function) is an external
description.

e State-space model is an internal description.

e Are the two equivalent? Consider the following example.

v
v o gl s — 1 ~ 1 | .y
s + 1 s — 1
. 1
Transfer function is
s + 1
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e The realization may look like

u(t) xl 2 y(t)

>2ﬁ<i/ / -

e Determining the state equations.
x1(t) = x1(0)e™t — 2e7t x u(t)
1 1
w2(t) = [22(0) + Ewl(ﬂ)]et - Ewl(o)e_t + e txu(t)
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Describing Systems. Internal vs. External

Summary and Things to Ponder

e From the state trajectories, the system is unstable.

The e? in z5(t) makes the state blow up.

e From the transfer function, system appears to be stable.

Cannot see the internal instability; only the pole at —1.

o Observations.

— et term is a hidden mode.
—no feedback from y to u can stabilize the system.
—unstable pole canceled with a zero.
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e We can derived state-space models from physics or from

ODEs.

e We looked at 4 canonical forms. How many more?

e Can we reduce the number of states in the realization?

How many states are necessary?

e Internal vs. external look at system descriptions.

Pole-zero cancellations.
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