
EE 212

Today’s EE 212 Lecture

• State-space models from physics.

• State-space models from ODEs.

•Canonical forms.

•Diagonal realization.

•Describing systems. Internal and external descriptions.
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How Do We Get State-space Models

•From physical descriptions.

– write down the equations governing the system.

– identify a state vector.

– rewrite the system equations using the state vector.

•From ordinary differential equations (ODEs).

Solve ODEs using canonical state-space realizations.
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Examples

• Simple pendulum (unit length).

mθ̈ + mg sin θ = 0

With state

[
x1
x2

]

=

[
θ

θ̇

]

,

d

dt

[
x1
x2

]

=

[
x2

−g sinx1

]

θ
L = 1

m

mgmg sin θ

•Two-state, nonlinear, time-invariant system.
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Examples

• Solution to simple pendulum equations.

Exact solution is difficult to get.
But for small x1, sinx1 ≈ x1, so linearize the state
equations to

d

dt

[
x1
x2

]

≈
[

x2
−gx1

]

•With initial conditions x1(0) = θ0 and x2(0) = 0, we
have

x1(t) = θ0 cos(
√
gt), x2 = θ0

√
g sin(

√
gt)

Simple harmonic motion.
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Examples

• Series RLC Circuit.

L
d2

dt2
i(t) + R

d

dt
i(t) +

1

C
i(t) = 0

With state

[
x1
x2

]

=

[
i(t)
d
dti(t)

]

,

d

dt

[
x1
x2

]

=

[
0 1

− 1
LC −R

L

] [
x1
x2

]

R

L

C

i(t)

•Two-state, linear, time-invariant system.

We all know how to solve this.
Solved using standard ODE techniques.
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Examples

•General mechanical system.

Mechanical system with k degrees of freedom with small
motions.

Mq̈ + Dq̇ + Kq = 0

– q(t) ∈ Rk is the vector of generalized displacements.

–M is the mass matrix, K is the stiffness matrix and
D is the damping matrix.

•With state x =

[
q
q̇

]

, ẋ =

[
0 I

−M−1K −M−1D

]

x.

Linear, time-invariant system.
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Examples

•Two-mass,
two-spring
system.

m1 m2

k1 k2

x1 x2

Equations of motion.

m1ẍ1 = −k1x1 + k2(x2 − x1)

m2ẍ2 = k2(x2 − x1)

Thus, with q =

[
x1
x2

]

,

M =

[
m1 0
0 m2

]

, D = 0, K =

[
k1 + k2 − k2

−k2 k2

]
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Canonical Realizations from ODEs

•Restrict our attention to continuous-time LTI systems.

We will look at discrete-time systems in EE 233.

•Let us say we have a sytem describe by a differential
equation. Input-output relation is

[

b1 + b2
d

dt
+ b3

d2

dt2

]

u(t)

=

[

a1 + a2
d

dt
+ a3

d2

dt2
+

d3

dt3

]

y(t)
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Canonical Realizations from ODEs

•The I/O transfer function may be written as

G(s) =
Y (s)

U(s)
=

b3s
2 + b2s + b1

s3 + a3s2 + a2s + a1

• Introducing a dummy variable E(s) and splitting the
equation gives

Y (s)

U(s)
=

b3s
2 + b2s + b1

s3 + a3s2 + a2s + a1
·
E(s)

E(s)

Y (s) = (b3s
2 + b2s + b1)E(s)

U(s) = (s3 + a3s
2 + a2s + a1)E(s)
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Canonical Realizations from ODEs

•We can now assign state variables as

E(s) → e(t)
△
= x1(t)

sE(s) →
d

dt
e(t) =

d

dt
x1(t)

△
= x2(t)

s2E(s) →
d2

dt2
e(t) =

d

dt
x2(t)

△
= x3(t)

•The above state assignment is not unique. You can
choose other assignments.

Standard way of assigning state variables? Later.
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Canonical Realizations from ODEs

•Expanding and taking the inverse Laplace transform of

U(s) = (s3 + a3s
2 + a2s + a1)E(s)

gives

d

dt
x3(t) = − a1x1(t) − a2x2(t) − a3x3(t) + u(t)

•Also taking the inverse Laplace of the Y (s) equation

Y (s) = (b3s
2 + b2s + b1)E(s)

gives

y(t) = b1x1(t) + b2x2(t) + b3x3(t)
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Canonical Realizations from ODEs

•Block diagram realization (controller canonical form).

u(t)

y(t)

x1(t)

x2(t)x3(t)

b2 b1b3

−a2

−a1

−a3

∫∫∫

+

+
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Controller Canonical Form

•We can always go from ODE to the transfer function by
Laplace transform. Consider the transfer function

G(s) =
Y (s)

U(s)
=

bns
n−1 + bns

n−2 + . . . + b1

sn + ansn−1 + . . . + a1

• Introducing a dummy variable E(s) and splitting the
resulting equation,

Y (s)

U(s)
=

bns
n−1 + bn−1s

n−2 + . . . + b1

sn + ansn−1 + . . . + a1
·
E(s)

E(s)

Y (s) = (bns
n−1 + bn−1s

n−2 + . . . + b1)E(s)

U(s) = (sn + ans
n−1 + . . . + a1)E(s)
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Controller Canonical Form

•Noting the integration-differentiation transform, we can
assign state variables as

E(s) → e(t)
△
= x1(t)

sE(s) →
d

dt
e(t) =

d

dt
x1(t)

△
= x2(t)

s2E(s) →
d2

dt2
e(t) =

d

dt
x2(t)

△
= x3(t)

...

sn−1E(s) →
dn−1

dtn−1
e(t) =

d

dt
xn−1(t)

△
= xn(t)

snE(s) →
dn

dtn
e(t) =

d

dt
xn(t)
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Controller Canonical Form

•We now have the state equations for
d

dt
xi(t),

i = 1, . . . , n − 1 in terms of other state variables.

•Expanding and taking the inverse Laplace transform of

U(s) = (sn + ans
n−1 + . . . + a1)E(s)

gives us the state equation for
d

dt
xn(t).

d

dt
xn(t) = −a1x1(t) − a2x2(t) − . . .

− anxn(t) + u(t)
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Controller Canonical Form

• In matrix form,
d

dt
x(t) = Ax(t) + Bu(t)

where

x(t) =







x1(t)
x2(t)

...
xn(t)







⇒
d

dt
x(t) =







ẋ1(t)
ẋ2(t)

...
ẋn(t)







A =









0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0

...
−a1 −a2 −a3 . . . −an









B =









0
0
...
0
1








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Controller Canonical Form

•The output equation is obtained by expanding and
taking the inverse Laplace transform of

Y (s) = (bns
n + bn−1s

n−2 + . . . + b1)E(s)

which gives in matrix form,

y(t) = [b1 b2 . . . bn]







x1(t)
x2(t)

...
xn(t)







or y(t) = Cx(t).
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Controller Canonical Form

•Consider again the transfer function

G(s) =
bns

n−1 + bn−1s
n−2 + . . . + b1

sn + ansn−1 + . . . + a1

Multiplying by s−n/s−n, we can write

Y (s)

U(s)
=

bns
−1 + bn−1s

−2 + . . . + b1s
−n

1 + ans−1 + . . . + a1s−n
·
E(s)

E(s)

We can split this into two equations,

Y (s) = (bns
−1 + bn−1s

−2 + . . . + b1s
−n)E(s)

U(s) = (1 + ans
−1 + . . . + a1s

−n)E(s)

⇒ E(s) = U(s) − ans
−1E(s) − . . . − a1s

−nE(s)
Lumped State-space Models

EE 212

c©2003 M.C. Ramos

UP EEE Department

EE 212

Controller Canonical Form

•Block diagram realization.

u(t)

y(t)

x1(t)

x2(t)

xn(t)

b2 b1bn

−a2

−a1

−an

∫ ∫∫

+

+
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Standard Canonical Forms

•Controller (controllable) canonical form.

•Controllability canonical form.

•Observer (observable) canonical form.

•Observability canonical form.
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Standard Canonical Forms

•Observer canonical form.

d

dt
x(t) = Ax(t) + Bu(t), y(t) = Cx(t)

A =









0 0 0 . . . 0 −a1
1 0 0 . . . 0 −a2
0 1 0 . . . 0 −a3

...
0 0 0 . . . 1 −an









B =









b1
b2
...

bn−1
bn









C = [0 0 . . . 0 1]
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Standard Canonical Forms

•Observer canonical form block diagram.
u(t)

y(t)x1(t) x2(t) xn(t)

b2b1 bn

−a2−a1 −an

∫∫∫

+++
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Standard Canonical Forms

•Controllability canonical form.

d

dt
x(t) = Ax(t) + Bu(t), y(t) = Cx(t)

A =









0 0 0 . . . 0 −a1
1 0 0 . . . 0 −a2
0 1 0 . . . 0 −a3

...
0 0 0 . . . 1 −an









B =









1
0
...
0
0









C = [β1 β2 . . . βn]
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Standard Canonical Forms

•Controllability canonical form block diagram.

u(t)

y(t)

x1(t) x2(t) xn(t)

β2β1 βn

−a2−a1 −an

∫∫∫

+

+++
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Standard Canonical Forms

•Observability canonical form.

d

dt
x(t) = Ax(t) + Bu(t), y(t) = Cx(t)

A =









0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0

...
−a1 −a2 −a3 . . . −an









B =







β1
β2
...
βn







C = [1 0 . . . 0]
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Standard Canonical Forms

•Observability canonical form block diagram.
u(t)

y(t)x1(t)x2(t)xn(t)

β2 β1βn

−a2

−a1

−an

∫∫∫

+++
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Diagonal Realization

• Suppose all poles of G(s) are distinct and real.

G(s) =
b3s

2 + b2s + b1

(s − λ1)(s − λ2)(s − λ3)

•Partial fraction expansion gives

G(s) =
γ1

s − λ1
+

γ2

s − λ2
+

γ3

s − λ3

•We can realize each term as a separate system.

The output of the individual systems can be scaled (by
the γ’s) and summed to get the overall output.
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Diagonal Realization

•The diagonal realization is




ẋ1(t)
ẋ2(t)
ẋ3(t)



 =





λ1 0 0
0 λ2 0
0 0 λ3









x1(t)
x2(t)
x3(t)



 +





1
1
1



u

y = [γ1 γ2 γ3]





x1(t)
x2(t)
x3(t)





•Useful for independent control of states.

Individual modes are also obvious.
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Diagonal Realization

•Block diagram of the diagonal realization.

u(t) y(t)

x1(t)

x2(t)

x3(t)

γ2

γ1

γ3

λ2

λ1

λ3

∫

∫

∫

++

+

+
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State-space to Transfer Function

•Given the state-space realization

ẋ = Ax + Bu y = Cx + Du, x(0) = 0

What is the transfer function from u to y?

•Take the Laplace transforms.

sX(s) = AX(s) + BU(s), Y (s) = CX(s) + DU(s)

Simplify,

Y (s) =
[

C(sI − A)−1B + D
]

︸ ︷︷ ︸

transfer function, G(s)

U(s) = G(s)U(s)
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Describing Systems. Internal vs. External

• I/O description (transfer function) is an external
description.

• State-space model is an internal description.

•Are the two equivalent? Consider the following example.

s − 1

s + 1

1

s − 1
u

v
y

Transfer function is
1

s + 1
.
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Describing Systems. Internal vs. External

•The realization may look like

+ ++

u(t) y(t)∫∫ x1 x2

−1

−2

•Determining the state equations.

x1(t) = x1(0)e
−t − 2e−t ∗ u(t)

x2(t) = [x2(0) +
1

2
x1(0)]e

t −
1

2
x1(0)e

−t + e−t ∗ u(t)
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Describing Systems. Internal vs. External

•From the state trajectories, the system is unstable.

The et in x2(t) makes the state blow up.

•From the transfer function, system appears to be stable.

Cannot see the internal instability; only the pole at −1.

•Observations.

– et term is a hidden mode.

– no feedback from y to u can stabilize the system.

– unstable pole canceled with a zero.
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Summary and Things to Ponder

•We can derived state-space models from physics or from
ODEs.

•We looked at 4 canonical forms. How many more?

•Can we reduce the number of states in the realization?

How many states are necessary?

• Internal vs. external look at system descriptions.

Pole-zero cancellations.
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