

A Study of Low-IF RF CMOS

Mixers

A Thesis Proposal November 03, 2004

Aaron Jay S. Cabuling Researcher

John Richard E. Hizon Adviser

Outline

- Introduction
- □ Review of Related Literature
- □ Methodology
- □ Schedule
- □ Summary

Introduction

- □ Wireless Technology mobile phones, IEEE802.11 standards
- Higher performance of RF circuit design tools
- □ RF CMOS IC lower cost and single-chip implementation of circuits
- □ RF Section critical block in most communication systems

Receiver

Blocks

- Filters, LNA, Mixer
- □ Architectures
 - High-IF, Zero-IF, Low-IF

Mixer

$$V_{RF} = A\cos(\omega_{RF})t$$
 $V_{LO} = B\cos(\omega_{LO})t$

$$V_{IF} = \frac{AB}{2} \left[\cos(\omega_{RF} + \omega_{LO})t + \cos(\omega_{RF} - \omega_{LO})t \right]$$

□ Ports

- Radio Frequency (RF)
 - -2.402 GHz
- Local Oscillator Frequency (LO)
 - -2.4 GHZ
- Intermediate Frequency (IF)
 - -2 MHz

Image Frequency

$$\omega_{IF} = \omega_{RF} - \omega_{LO}$$

$$\omega_{\mathit{IF}} = \omega_{\mathit{LO}} - \omega_{\mathit{image}}$$

□ Image

- Mirror-like symmetry about the LO
- Undesired signal, noise
- Suppressed by filtering

Mixer

- □ RF V-I converter
- □ LO alternating switches
- □ R load

Design Considerations

- □ Input and Output Impedance
- Conversion Gain
- □ Noise Figure
- Linearity
 - 1dB Compression Point
 - IIP3
- □ Isolation
- □ LO Input Power

Input and Output Impedance

- □ LNA and mixer directly connected at low-IF
- On-chip connection << wavelength of signal</p>
- Input matching
 - Needed for stand-alone mixers
 - Zin (mixer) = Zout (source)
 - S11 < -10dB sufficient for practical applications
- Output matching
 - Zout (mixer) = Zin (measuring device)
 - Buffer

Conversion Gain

$$VoltageGain = 20 \log \left(\frac{V_{out}}{V_{in}} \right)$$

$$PowerGain = 10 \log \left(\frac{P_{out}}{P_{in}} \right)$$

$$PowerGain = 10 \log \left(\frac{P_{out}}{P_{in}} \right)$$

$$PowerGain = VoltageGain - 10 \log \left(\frac{R_S}{R_L}\right)$$

- Efficiency of the transposition from RF to IF
- Ratio of IF output versus RF input
- □ Affects the linearity & NF of the receiver

Noise Figure

$$NF = 10 \log \left(\frac{SNR_{IN}}{SNR_{OUT}} \right) = 10 \log \left(\frac{N_s + N_a}{N_s} \right)$$

- Input noise corruption relative to output noise corruption measured in decibels
- Both RF signal and image signal contributes output noise
- □ SSB NF noise to be measured at low-IF

Linearity

$$S_{out} = a_0 + a_1 S_{in} + a_2 S_{in}^2 + a_3 S_{in}^3 + a_4 S_{in}^4 + \dots$$

$$S_{in} = x_1 + x_2 = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t$$

$$S_{out} = a_0 + a_1(x_1 + x_2) + a_2(x_1 + x_2)^2 + a_3(x_1 + x_2)^3$$

$$S_{out} = a_0 + a_1(x_1 + x_2) + a_2(x_1^2 + 2x_1x_2 + x_2^2) + a_3(x_1^3 + 3x_1^2x_2 + 3x_1x_2^2 + x_2^3)$$

Linearity

$$(x_1 + x_2)^2 = a_2(x_1^2 + 2x_1x_2 + x_2^2)$$
HD2 MIX HD2

$$(x_1 + x_2)^3 = (x_1^3 + 3x_1^2x_2 + 3x_1x_2^2 + x_2^3)$$
HD3 IM3 IM3 HD3

- □ MIX (IM2) for frequency translation
- □ HD3 & IM3 gain compression and intermodulation distortion

IIP3

- Commonly used measure of linearity
- Intersection of output power of the desired signal and the IM3
- IIP3 referred to the input power
- OIP3 referred to the output power

1dB Compression Point

- Used to estimate the largest input possible
- 1dB decreased in gain from ideal
- Large signal input conditions

$$P_{-1 dB} = IIP_3 - 9.6 dB$$

Isolation

- □ LO to RF
 - Quite serious in zero-IF architectures
 - DC offsets
- □ LO to IF
 - Degrads the performance of the following stage
- □ RF to IF
 - Critical issue in zero-IF architectures

Mixer Topologies

- □ Passive
- □ Active
 - Single-balanced Mixer
 - Double-balanced Mixer
 - CG-CS Mixer
 - Folded Switching Mixer

Single-balanced Mixer

- □ Simplest active mixer
- Single-ended RF input
- Moderate gain
- □ Low NF
- □ Low IIP3, 1dB CP, Isolation
- High input impedance

Double-balanced Mixer

- □ Gilbert cell
- Symmetrical
 - High Isolation
 - Output Rejection
- □ High gain
- □ Very low NF
- □ Good linearity

CG-CS Mixer

- □ 2 input transistors
 - Common-gate
 - Common-source
- Single-to-differential
- □ High IIP3
- □ Modest NF

Folded Switching Mixer

Statement of the Problem

A clear guideline in designing low-IF RF CMOS mixers are unavailable. Data on the different performance parameters are inadequate and hard to quantify. In response to these shortcomings, this study aims to develop a methodology in the design and testing of RF CMOS mixers to maximize time, effort and money.

- □ Cadence SchematicEditor
- □ Reference Circuit
 - Single-ended
 - -LO input
 - IF output
 - Active Load
 - Buffer Circuit
 - Inductors

Reference Circuit

□ Design Metrics

- $-g_{\rm m}/I_{\rm d}$
- Inductor types
- Transistor sizes
 - RF
 - **LO**
 - Load

Impedance Matching

- Input Inductor
- Output Buffer

Simulations

- SpectreRF by Cadence
- Analysis
 - DC DC operating pts.
 - SP S11parameters
 - PAC Conversion Gains
 - PAC, Pnoise NFs
 - PAC, PSS IIP3, 1dB CP
- □ ASITIC

- Cadence VirtuosoLayout Editor
- **0.25** μ**m** CMOS
- □ Transistor
 - Cluster of finger
 - Double-contacted gate
- □ Inductor
 - Metal 4 & Metal 5

□ Simulations

- SpectreRF by Cadence
- 13 Test Structures
 - 11 Single-balanced Mixers
 - 1 Double-balanced Mixer
 - 1 Open Structure

List of Test Structures

Test Structure	g _m /l _D	RF Width (mm)	LO Width (mm)	Conversion Gain (dB)	Inductor Type
*single 1	10	300	300	6	square
*single 2	10	250	300	6	square
*single 3	10	350	300	6	square
single 4	10	300	150	6	square
single 5	10	300	450	6	square
single 6	10	300	300	3	square
*single 7	10	300	300	9	square
*single 8	10	300	300	6	halo
*single 9	10	300	300	6	PGS
single 10	5	300	300	6	square
single 11	15	300	300	6	square
double	10	300	300	6	square
*open	-	-	-	, -	-

^{*}Sent for fabrication: 23 August 2004

Double-balanced Mixer

□ Fabricated

- TSMC
- 1st Fab: Aug 23, 2004
 - -7 Test Structures
- 2nd Fab: Jan-Feb 2005

- □ Micromanipulator
- □ GSG probes
- □ Parametric Analyzer
 - DC supply
 - Measure DC
- □ Signal Generator
 - AC supply (RF & LO)

- □ Network Analyzer
 - S Parameters
- Spectrum Analyzer
 - Conversion Gain
 - Noise Figure
 - IIP3
 - 1dB Compression Point

- Data Gathering
- Collation
- □ Analysis
- Conclusions
- □ Recommendations

Gantt Chart

Phase 1	APR	MA	Y	JUN	ML	AUG		SEP		OCT		NOV		DEC		JAN		FEB		MAR		APR		MAY		JUN	
											Ĭ						Ĭ					8			8 0		
Phase 2																									S 50	3 8	
Phase 3		Ц														T											
Phase 4																											
Phase 5																											
Phase 6	. si		- 84	3 &	S 55 3		8 d		d.										7 - 2								
Phase 7																											

Schedule

- □ Phase 1 Gathering of material and literature review
 - Thesis proposal.
- Phase 2 Simulation and initial data gathering
 - Testing methodology for mixers.
 - Collated data needed in the actual mixer design and implementation.
- □ Phase 3 Mixer Design and Implementation
 - Fabrication ready mixer test structures.
- □ Phase 4 Chip fabrication

Schedule

- □ Phase 5 Documentation
 - Paper documentation.
- □ Phase 6 On-wafer Testing
 - Methodology for mixer testing.
 - Data of fabricated mixers.
- □ Phase 7 Analysis and Results
 - Analysis on the data gathered.
 - Conclusions on the impact of varying device sizes and design parameters.
 - Recommendations for future works on mixers.

Summary

- Aims to develop a methodology in designing and testing of low-IF RF CMOS mixers.
- □ 13 test structures will be fabricated & characterized.
- Measure the following parameters:
 - DC characteristics
 - S Parameters
 - Conversion gain versus LO input power.
 - Noise figure versus LO input power.
 - 1 dB compression point
 - IIP3

Thank You!

Receiver Architectures

- □ High-IF (Superheterodyne system)
 - High-Q components superior sensitivity and selectivity
 - Low level of integration
- Zero-IF (Direct conversion)
 - High level of integration
 - Flicker noise, DC offsets, high sensitivity to 2nd order distortion

Receiver Architectures

□ Low-IF

- Typically few MHz
- Flicker noise and DC offsets are avoided
- High level of integration
- Bluetooth